Clever Geek Handbook
📜 ⬆️ ⬇️

Karp Information

Any languageLone {\ displaystyle L_ {1}} L_ {1} called reducible by Karp to the languageL2 {\ displaystyle L_ {2}} L_ {2} if function existsF:Σ∗↦Σ∗ {\ displaystyle F \ colon \ Sigma ^ {*} \ mapsto \ Sigma ^ {*}} {\ displaystyle F \ colon \ Sigma ^ {*} \ mapsto \ Sigma ^ {*}} calculated in polynomial time, where F (x) belongsL2 {\ displaystyle L_ {2}} L_ {2} if x belongsLone {\ displaystyle L_ {1}} L_ {1} . A language is called NP-hard if any NP class language reduces to it, and is called NP-complete if it is NP-hard and reduces itself to NP class. If there is an algorithm that solves an NP-complete problem in polynomial time, then all NP-problems are of class P.

Consider two languagesLone {\ displaystyle L_ {1}} L_ {1} andL2 {\ displaystyle L_ {2}} L_ {2} over the alphabetsΣ {\ displaystyle \ Sigma} \ Sigma andΓ {\ displaystyle \ Gamma} \ Gamma . InformationLone {\ displaystyle L_ {1}} L_ {1} toL2 {\ displaystyle L_ {2}} L_ {2} Karp is a functionf:Σ∗↦Γ∗ {\ displaystyle f \ colon \ Sigma ^ {*} \ mapsto \ Gamma ^ {*}} {\ displaystyle f \ colon \ Sigma ^ {*} \ mapsto \ Gamma ^ {*}} computable in polynomial time such that∀x(x∈Lone⇔f(x)∈L2) {\ displaystyle \ forall x (x \ in L_ {1} \ Leftrightrow f (x) \ in L_ {2})} {\ displaystyle \ forall x (x \ in L_ {1} \ Leftrightrow f (x) \ in L_ {2})} . So informally languageLone {\ displaystyle L_ {1}} L_ {1} "Not harder" languageL2 {\ displaystyle L_ {2}} L_ {2} .

If such a functionf {\ displaystyle f} f exists say thatLone {\ displaystyle L_ {1}} L_ {1} reducible by Karp toL2 {\ displaystyle L_ {2}} L_ {2} and write

Lone⩽KL2.{\ displaystyle L_ {1} \ leqslant _ {K} L_ {2}.} {\ displaystyle L_ {1} \ leqslant _ {K} L_ {2}.}

Note that Kap information is a special case of Cook information . In English sources, you can also find the name en: many-one reduction .

The PSPACE language class is the set of languages ​​allowed by a deterministic Turing machine with a polynomial space constraint.

The NPSPACE language class is the set of languages ​​allowed by a non-deterministic Turing machine with a polynomial space constraint.

Transitivity

The main property of Kap information is transitivity. If we represent languages ​​as symbols, then we can consider them as a mathematical operation: Α> Β, Β> Ε → Α> Ε.

See also

  • The concept of information. List.

Links

  • The course "Introduction to the structural theory of complexity"
  • Hopkfroft J., Motvani R., Ulman J. Introduction to the theory of automata, languages ​​and computations, 2nd ed .: Trans. from English - M .: Publishing house "Williams", 2002.
  • MN Vyalyy, The complexity of computational problems - the definition of functions, without the concepts of "language", "alphabet", etc.
Source - https://ru.wikipedia.org/w/index.php?title=Developing_Karpu&oldid=94268372


More articles:

  • Lukin, Ruslan Yuryevich
  • Counter (Electronics)
  • Sayechnikov, Vladimir Alekseevich
  • Chilean Football Championship 1986
  • Simonyan, Voski Zakharovna
  • Kakabaev, Annaberdy
  • Pure (Omsk region)
  • Lucius Calpurnius Bestia (Edril)
  • Un peu de nous
  • Khodasevich, Pavel Vladimirovich

All articles

Clever Geek | 2019