Clever Geek Handbook
📜 ⬆️ ⬇️

Partial geometry

Let there be an incidence structureC=(P,L,I) {\ displaystyle C = (P, L, I)} {\ displaystyle C = (P, L, I)} consisting of pointsP {\ displaystyle P} P directL {\ displaystyle L} L and flagsI⊆P×L {\ displaystyle I \ subseteq P \ times L} I \ subseteq P \ times L . They say the pointp {\ displaystyle p} p direct incidentl {\ displaystyle l} l , if(p,l)∈I {\ displaystyle (p, l) \ in I} (p, l) \ in I . A structure is called finite partial geometry if integers exists,t,α≥one {\ displaystyle s, t, \ alpha \ geq 1} {\ displaystyle s, t, \ alpha \ geq 1} such that:

  • For any pair of different pointsp {\ displaystyle p} p andq {\ displaystyle q} q there is a maximum of one line incident to both points.
  • Every direct incidents+one {\ displaystyle s + 1} s + 1 points.
  • Every point is incidentalt+one {\ displaystyle t + 1} t + 1 direct.
  • If the pointp {\ displaystyle p} p and directl {\ displaystyle l} l not incidental, exists exactlyα {\ displaystyle \ alpha} \ alpha steam(q,m)∈I {\ displaystyle (q, m) \ in I} {\ displaystyle (q, m) \ in I} such thatp {\ displaystyle p} p incidentalm {\ displaystyle m} m , butq {\ displaystyle q} q incidentall {\ displaystyle l} l .

Partial geometry with these parameters is denoted bypg(s,t,α) {\ displaystyle pg (s, t, \ alpha)} {\ displaystyle pg (s, t, \ alpha)} .

Content

  • 1 Properties
  • 2 Special cases
  • 3 Generalizations
  • 4 notes
  • 5 Literature

Properties

  • The number of points is given by the formula(s+one)(st+α)α {\ displaystyle {\ frac {(s + 1) (st + \ alpha)} {\ alpha}}}   , and the number of lines by the formula(t+one)(st+α)α {\ displaystyle {\ frac {(t + 1) (st + \ alpha)} {\ alpha}}}   .
  • Dot graph [1] structurepg(s,t,α) {\ displaystyle pg (s, t, \ alpha)}   is a strongly regular graph :srg((s+one)(st+α)α,s(t+one),s-one+t(α-one),α(t+one)) {\ displaystyle srg ((s + 1) {\ frac {(st + \ alpha)} {\ alpha}}, s (t + 1), s-1 + t (\ alpha -1), \ alpha (t + one))}   .
  • Partial geometries are dual - a dual structure forpg(s,t,α) {\ displaystyle pg (s, t, \ alpha)}   is just a structurepg(t,s,α) {\ displaystyle pg (t, s, \ alpha)}   .

Special cases

  • Generalized quadrangles are exactly partial geometriespg(s,t,α) {\ displaystyle pg (s, t, \ alpha)}   fromα=one {\ displaystyle \ alpha = 1}   .
  • Steiner systems are exactly partial geometriespg(s,t,α) {\ displaystyle pg (s, t, \ alpha)}   fromα=s+one {\ displaystyle \ alpha = s + 1}   .

Generalizations

S=(P,L,I){\ displaystyle S = (P, L, I)}   of orders,t {\ displaystyle s, t}   called semi-partial geometry if integers existα≥one,μ {\ displaystyle \ alpha \ geq 1, \ mu}   such that:

  • If the pointp {\ displaystyle p}   and directℓ {\ displaystyle \ ell}   not incidental, exists either0 {\ displaystyle 0}   or exactlyα {\ displaystyle \ alpha}   steam(q,m)∈I {\ displaystyle (q, m) \ in I}   such thatp {\ displaystyle p}   incidentalm {\ displaystyle m}   andq {\ displaystyle q}   incidentalℓ {\ displaystyle \ ell}   .
  • Any pair of noncollinear points has exactlyμ {\ displaystyle \ mu}   common neighbors.

A semi-partial geometry is partial geometry if and only ifμ=α(t+one) {\ displaystyle \ mu = \ alpha (t + 1)}   .

It is easy to show that the collinearity graph [1] of such a geometry is strictly regular with parameters(one+s(t+one)+s(t+one)t(s-α+one)/μ,s(t+one),s-one+t(α-one),μ) {\ displaystyle (1 + s (t + 1) + s (t + 1) t (s- \ alpha +1) / \ mu, s (t + 1), s-1 + t (\ alpha -1) , \ mu)}   .

A good example of this geometry is obtained by taking affine pointsPG(3,q2) {\ displaystyle PG (3, q ^ {2})}   and only those lines that intersect the plane at infinity at a point of a fixed Baire subplane. Geometry has parameters(s,t,α,μ)=(q2-one,q2+q,q,q(q+one)) {\ displaystyle (s, t, \ alpha, \ mu) = (q ^ {2} -1, q ^ {2} + q, q, q (q + 1))}   .

Notes

  1. ↑ 1 2 If a partial geometry P is given in which any two points define at most one straight line, a collinearity graph or a point graph of geometry P is a graph whose vertices are points P and two vertices are connected by an edge if and only if they define a straight line in P.

Literature

  • Brouwer AE, van Lint JH Strongly regular graphs and partial geometries // Enumeration and Design / Jackson DM, Vanstone SA. - Toronto: Academic Press, 1984. - S. 85–122.
  • Bose RC Strongly regular graphs, partial geometries and partially balanced designs // Pacific J. Math. - 1963.- T. 13 . - S. 389-419 .
  • De Clerck F., Van Maldeghem H. Some classes of rank 2 geometries // Handbook of Incidence Geometry. - Amsterdam: North-Holland, 1995. - S. 433-475.
  • Thas JA Partial Geometries // Handbook of Combinatorial Designs / Colbourn Charles J., Dinitz Jeffrey H .. - 2nd. - Boca Raton: Chapman & Hall / CRC, 2007. - S. 557-561. - ISBN 1-58488-506-8 .
  • Debroey I., Thas JA On semipartial geometries // Journal of Combinatorial Theory Ser. A. - 1978. - T. 25 . - S. 242–250 .
Source - https://ru.wikipedia.org/w/index.php?title=Partial_Geometry&oldid=88048326


More articles:

  • Clausura 2005 (Chile)
  • Amalocalyx
  • Theodora Angelina
  • Clausura 2004 (Chile)
  • Aperture 2004 (Chile)
  • Finland at the 2020 Summer Olympics
  • Miami Arena
  • 52 year
  • LZ 61
  • Ultima II: The Revenge of the Enchantress

All articles

Clever Geek | 2019