Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Inada Terms

Inada conditions in the macroeconomics are called assumptions about the nature of the production function , which guarantee the stability of economic growth in the neoclassical model . In its current form, Hirofumi Uzawa was introduced [1] , named after another Japanese economist, [2] .

Six conditions are given:

  1. function valuef(x) {\ displaystyle f (\ mathbf {x})} f (\ mathbf {x}) atx=0 {\ displaystyle \ mathbf {x} = \ mathbf {0}} {\ displaystyle \ mathbf {x} = \ mathbf {0}} equals 0:f(0)=0 {\ displaystyle f (\ mathbf {0}) = 0} {\ displaystyle f (\ mathbf {0}) = 0} ;
  2. the function is continuously differentiable ;
  3. function strictly increases inxi {\ displaystyle x_ {i}} x_ {i} :βˆ‚f(x)/βˆ‚xi>0 {\ displaystyle \ partial f (\ mathbf {x}) / \ partial x_ {i}> 0} {\ displaystyle \ partial f (\ mathbf {x}) / \ partial x_ {i}> 0} ;
  4. the second derivative of the function is negative with respect toxi {\ displaystyle x_ {i}} x_ {i} (i.e. the function is concave ):βˆ‚2f(x)/βˆ‚xi2<0 {\ displaystyle \ partial ^ {2} f (\ mathbf {x}) / \ partial x_ {i} ^ {2} <0} {\ displaystyle \ partial ^ {2} f (\ mathbf {x}) / \ partial x_ {i} ^ {2} <0} ;
  5. first derivative limitf(x) {\ displaystyle f (\ mathbf {x})} f (\ mathbf {x}) equal to infinity forxi {\ displaystyle x_ {i}} x_ {i} tending to 0:limxiβ†’0βˆ‚f(x)/βˆ‚xi=+∞ {\ displaystyle \ lim _ {x_ {i} \ to 0} \ partial f (\ mathbf {x}) / \ partial x_ {i} = + \ infty} {\ displaystyle \ lim _ {x_ {i} \ to 0} \ partial f (\ mathbf {x}) / \ partial x_ {i} = + \ infty} ;
  6. first derivative limitf(x) {\ displaystyle f (\ mathbf {x})} f (\ mathbf {x}) equal to 0 forxi {\ displaystyle x_ {i}} x_ {i} tending to infinity:limxiβ†’+βˆžβˆ‚f(x)/βˆ‚xi=0 {\ displaystyle \ lim _ {x_ {i} \ to + \ infty} \ partial f (\ mathbf {x}) / \ partial x_ {i} = 0} {\ displaystyle \ lim _ {x_ {i} \ to + \ infty} \ partial f (\ mathbf {x}) / \ partial x_ {i} = 0} .

Of the class of CES functions, all these conditions are satisfied only by the Cobb – Douglas function .

Notes

  1. ↑ Uzawa , H. On a Two-Sector Model of Economic Growth II (Eng.) // The Review of Economic Studies : journal. - 1963. - Vol. 30 , no. 2 . - P. 105-118 .
  2. ↑ On a Two-Sector Model of Economic Growth: Comments and a Generalization (English) // The Review of Economic Studies : journal. - 1963. - Vol. 30 , no. 2 . - P. 119-127 .

Literature

  • Barro R.J. , Sala-i-Martin H. Economic growth. - M .: BINOM. Knowledge laboratory. - 2010 .-- S. 41 - 824s. - ISBN 978-5-94774-790-4 .
  • Romer D. Higher Macroeconomics. - M.: Publishing. HSE House, 2014 - p. 28β€”29 β€”855s. - ISBN 978-5-7568-0406-2
  • Gandolfo, Giancarlo. [ [1] in Google Books Economic Dynamics]. - Third. - Berlin: Springer, 1996. - P. 176-178. - ISBN 3-540-60988-1 .
Source - https://ru.wikipedia.org/w/index.php?title=Inada_conditions&oldid=100988612


More articles:

  • Guminskaya, Lesya Alexandrovna
  • Giovestan
  • Mengolan
  • Mehran (Albors)
  • Filatov, Alexey Valerievich
  • Krupp, Rudolf Paulevich
  • Adrian (soccer player)
  • Inhibieur Bjarnason
  • FIAS
  • Ponomarenko, Boris Antonovich

All articles

Clever Geek | 2019