Clever Geek Handbook
📜 ⬆️ ⬇️

Shielded Poisson Equation

In mathematics, the screened Poisson equation is a partial differential equation of the form:

[∇2-λ2]u(r)=-f(r),{\ displaystyle \ left [\ nabla ^ {2} - \ lambda ^ {2} \ right] u (\ mathbf {r}) = - f (\ mathbf {r}),} {\ displaystyle \ left [\ nabla ^ {2} - \ lambda ^ {2} \ right] u (\ mathbf {r}) = - f (\ mathbf {r}),}

Where∇2 {\ displaystyle {\ nabla} ^ {2}} {\ displaystyle {\ nabla} ^ {2}} - Laplace operator ,λ {\ displaystyle \ lambda} \ lambda Is a constantf {\ displaystyle f} f Is an arbitrary position function (known as a “source function”), andu {\ displaystyle u} u Is the desired function. The screened Poisson equation is often used in physics , including the Yukawa theory of meson screening and screening of an electric field in a plasma .

Whenλ {\ displaystyle \ lambda} \ lambda equal to zero, the equation turns into a Poisson equation . Therefore whenλ {\ displaystyle \ lambda} \ lambda very small, the solution approaches the solution of the unshielded Poisson equation, which is a superpositionone/r {\ displaystyle 1 / r} {\ displaystyle 1 / r} functions, statistically weighted source functionf {\ displaystyle f} f :

u(r)(Poisson)=∫d3r′f(r′)fourπ|r-r′|.{\ displaystyle u (\ mathbf {r}) _ {(Poisson)} = \ int d ^ {3} r '{\ frac {f (\ mathbf {r}')} {4 \ pi | \ mathbf {r } - \ mathbf {r} '|}}.} {\ displaystyle u (\ mathbf {r}) _ {(Poisson)} = \ int d ^ {3} r '{\ frac {f (\ mathbf {r}')} {4 \ pi | \ mathbf {r } - \ mathbf {r} '|}}.}

On the other hand, whenλ {\ displaystyle \ lambda} \ lambda very bigu {\ displaystyle u} u approaching the valuef/λ2 {\ displaystyle f / \ lambda ^ {2}} {\ displaystyle f / \ lambda ^ {2}} , which in turn approaches zero whenλ {\ displaystyle \ lambda} \ lambda goes to infinity. As we will see, the solution for averagesλ {\ displaystyle \ lambda} \ lambda behaves like a superposition of shielded (or fading)one/r {\ displaystyle 1 / r} {\ displaystyle 1 / r} functions, andλ {\ displaystyle \ lambda} \ lambda will be the power of shielding.

The screened Poisson equation can be solved for the generalf {\ displaystyle f} f using the Green function . Green functionG {\ displaystyle G} G defined as

[∇2-λ2]G(r)=-δ3(r).{\ displaystyle \ left [\ nabla ^ {2} - \ lambda ^ {2} \ right] G (\ mathbf {r}) = - \ delta ^ {3} (\ mathbf {r}).} {\ displaystyle \ left [\ nabla ^ {2} - \ lambda ^ {2} \ right] G (\ mathbf {r}) = - \ delta ^ {3} (\ mathbf {r}).}

Assuming thatu {\ displaystyle u} u and its derivatives are negligible at larger {\ displaystyle r} r , we can perform the Fourier transform in spatial coordinates:

G(k)=∫d3rG(r)eik⋅r{\ displaystyle G (\ mathbf {k}) = \ int d ^ {3} r \; G (\ mathbf {r}) e ^ {i \ mathbf {k} \ cdot \ mathbf {r}}} {\ displaystyle G (\ mathbf {k}) = \ int d ^ {3} r \; G (\ mathbf {r}) e ^ {i \ mathbf {k} \ cdot \ mathbf {r}}}

where the integral is taken over the entire space. Then it can be shown that

[k2+λ2]G(k)=one.{\ displaystyle \ left [k ^ {2} + \ lambda ^ {2} \ right] G (\ mathbf {k}) = 1.} {\ displaystyle \ left [k ^ {2} + \ lambda ^ {2} \ right] G (\ mathbf {k}) = 1.}

Therefore, the Green's function onr {\ displaystyle r} r is given by the inverse Fourier transform:

G(r)=one(2π)3∫d3ke-ik⋅rk2+λ2.{\ displaystyle G (\ mathbf {r}) = {\ frac {1} {(2 \ pi) ^ {3}}};; \ int d ^ {3} \! k \; {\ frac {e ^ {-i \ mathbf {k} \ cdot \ mathbf {r}}} {k ^ {2} + \ lambda ^ {2}}}. {\ displaystyle G (\ mathbf {r}) = {\ frac {1} {(2 \ pi) ^ {3}}};; \ int d ^ {3} \! k \; {\ frac {e ^ {-i \ mathbf {k} \ cdot \ mathbf {r}}} {k ^ {2} + \ lambda ^ {2}}}.

This integral can be estimated using spherical coordinates ink {\ displaystyle k} k -space. Integration over angular coordinates is not difficult, and the integral is simplified - now you need to integrate only along one radial coordinatek {\ displaystyle k} k :

G(r)=one2π2r∫0∞dkksin⁡krk2+λ2.{\ displaystyle G (\ mathbf {r}) = {\ frac {1} {2 \ pi ^ {2} r}} \; \ int \ limits _ {0} ^ {\ infty} dk \; {\ frac {k \, \ sin kr} {k ^ {2} + \ lambda ^ {2}}}. {\ displaystyle G (\ mathbf {r}) = {\ frac {1} {2 \ pi ^ {2} r}} \; \ int \ limits _ {0} ^ {\ infty} dk \; {\ frac {k \, \ sin kr} {k ^ {2} + \ lambda ^ {2}}}.

This integral can be estimated by integration over the contour ( residue theory ). As a result, we get:

G(r)=e-|λ|rfourπr.{\ displaystyle G (\ mathbf {r}) = {\ frac {e ^ {- | \ lambda | r}} {4 \ pi r}}.} {\ displaystyle G (\ mathbf {r}) = {\ frac {e ^ {- | \ lambda | r}} {4 \ pi r}}.}

The final solution to the entire problem:

u(r)=∫d3r′G(r-r′)f(r′)=∫d3r′e-|λ||r-r′|fourπ|r-r′|f(r′).{\ displaystyle u (\ mathbf {r}) = \ int d ^ {3} r'G (\ mathbf {r} - \ mathbf {r} ') f (\ mathbf {r}') = \ int d ^ {3} r '{\ frac {e ^ {- | \ lambda || \ mathbf {r} - \ mathbf {r}' |}} {4 \ pi | \ mathbf {r} - \ mathbf {r} ' |}} f (\ mathbf {r} ').} {\ displaystyle u (\ mathbf {r}) = \ int d ^ {3} r'G (\ mathbf {r} - \ mathbf {r} ') f (\ mathbf {r}') = \ int d ^ {3} r '{\ frac {e ^ {- | \ lambda || \ mathbf {r} - \ mathbf {r}' |}} {4 \ pi | \ mathbf {r} - \ mathbf {r} ' |}} f (\ mathbf {r} ').}

As stated above, this is a superposition of shieldedone/r {\ displaystyle 1 / r} {\ displaystyle 1 / r} functions statistically weighted by the source functionf {\ displaystyle f} f , andλ {\ displaystyle \ lambda} \ lambda is the shielding factor. Shieldedone/r {\ displaystyle 1 / r} {\ displaystyle 1 / r} a function often appears in physics as a screened Coulomb potential, and the Yukawa potential is also known.

See also

  • Yukawa interaction
Source - https://ru.wikipedia.org/w/index.php?title=Shielded Poisson's Equation&oldid = 70728818


More articles:

  • Alice (Texas)
  • Bombus (group)
  • Urlaub, Egor Fedorovich
  • Shemarov, Alexey Nikolaevich
  • Tanana (people)
  • Ivanov, Ilya Grigorievich
  • Jan Sheffz
  • Phuwiangosaurus
  • Sutter Family
  • Zhidkov, Yakov Ivanovich

All articles

Clever Geek | 2019