Clever Geek Handbook
📜 ⬆️ ⬇️

Kornachchi Algorithm

The Kornachchi algorithm is an algorithm for solving the Diophantine equationx2+dy2=m {\ displaystyle x ^ {2} + dy ^ {2} = m} {\ displaystyle x ^ {2} + dy ^ {2} = m} whereone≤d<m {\ displaystyle 1 \ leq d <m} {\ displaystyle 1 \ leq d <m} , and d and m are coprime . The algorithm was described in 1908 by Giuseppe Cornachchi [1] .

Content

Algorithm

First we find any solutionr02≡-d(modm) {\ displaystyle r_ {0} ^ {2} \ equiv -d {\ pmod {m}}}   . If suchr0 {\ displaystyle r_ {0}}   does not exist, the original equation has no primitive solutions. Without loss of generality, we can assume thatr0≤m2 {\ displaystyle r_ {0} \ leq {\ tfrac {m} {2}}}   (if this is not so, replace r 0 with m - r 0 , which remains the root of - d ). Now we use the Euclidean algorithm to searchrone≡m(modr0) {\ displaystyle r_ {1} \ equiv m {\ pmod {r_ {0}}}}   ,r2≡r0(modrone) {\ displaystyle r_ {2} \ equiv r_ {0} {\ pmod {r_ {1}}}}   and so on. Stop whenrk<m {\ displaystyle r_ {k} <{\ sqrt {m}}}   . If as=m-rk2d {\ displaystyle s = {\ sqrt {\ tfrac {m-r_ {k} ^ {2}} {d}}}}   is an integer, then the solution will bex=rk,y=s {\ displaystyle x = r_ {k}, y = s}   . Otherwise, there is no primitive solution.

To search for non-primitive solutions ( x , y ), where GCD ( x , y ) = g ≠ 1, we note from the existence of such a solution that g 2 divides m (and, equivalently, if m is square-free , then all solutions are primitive). Then the above algorithm can be used to search for a primitive solution ( u , v ) of the equationu2+dv2=mg2 {\ displaystyle u ^ {2} + dv ^ {2} = {\ tfrac {m} {g ^ {2}}}}   . If such a solution is found, then ( gu , gv ) will be a solution to the original equation.

Example

We solve the equationx2+6y2=103 {\ displaystyle x ^ {2} + 6y ^ {2} = 103}   . The square root of −6 (mod 103) is 32 and 103 ≡ 7 (mod 32). Insofar as72<103 {\ displaystyle 7 ^ {2} <103}   and103-726=3 {\ displaystyle {\ sqrt {\ tfrac {103-7 ^ {2}} {6}}} = 3}   , there exists a solution x = 7, y = 3.

Notes

  1. ↑ Cornacchia, 1908 , p. 33–90.

Literature

  • G. Cornacchia. Su di un metodo per la risoluzione in numeri interi dell 'equazione∑h=0nChxn-hyh=P {\ displaystyle \ sum _ {h = 0} ^ {n} C_ {h} x ^ {nh} y ^ {h} = P}   . // Giornale di Matematiche di Battaglini. - 1908. - T. 46 .

Links

Basilla, Julius Magalona On Cornacchia's algorithm for solving the diophantine equationu2+dv2=m {\ displaystyle u ^ {2} + dv ^ {2} = m}   (unspecified) (PDF) (12 May 2004).


Source - https://ru.wikipedia.org/w/index.php?title=Kornachchi_algorithm&oldid=86275212


More articles:

  • Scharnhorst (1936)
  • 1903 in Russia
  • Belyaevka (Volgograd Region)
  • Wimbledon 2017 tournament
  • Sokolov, Alexander Yuryevich (trainer)
  • Tormund Giant Death
  • Kolyshkino (Volgograd Region)
  • Red Square (Book Festival)
  • Creteil - Prefecture (metro station)
  • Spawn (animated series)

All articles

Clever Geek | 2019