Clever Geek Handbook
📜 ⬆️ ⬇️

Jacobi identity

Jacobi identity is an identity satisfied by a bilinear operation[⋅,⋅]:V×V→V {\ displaystyle [\ cdot, \ cdot] \ colon V \ times V \ rightarrow V} {\ displaystyle [\ cdot, \ cdot] \ colon V \ times V \ rightarrow V} in linear spaceV {\ displaystyle V} V under the following condition:

∀x,y,z∈V:[[x,y],z]+[[y,z],x]+[[z,x],y]=0{\ displaystyle \ forall \, x, y, z \ in V \ colon [[x, y], z] + [[y, z], x] + [[z, x], y] = 0} {\ displaystyle \ forall \, x, y, z \ in V \ colon [[x, y], z] + [[y, z], x] + [[z, x], y] = 0}

Named after Carl Gustav Jacobi .

The concept of Jacobi identity is usually associated with Lie algebras .

Content

Examples

The following operations satisfy the Jacobi identity:

  • Operator Switch
  • commutator in Lie algebra
  • Brackets Lee Vector Fields
  • Poisson brackets of functions on a symplectic manifold
  • Vector product of vectors

Value in Lie Algebras

If multiplication[⋅,⋅] {\ displaystyle [\ cdot, \ cdot]}   anticommutative , then the Jacobi identity can be given a slightly different form using the adjoint representation of the Lie algebra :

adx:y↦[x,y]{\ displaystyle \ mathrm {ad} _ {x} \ colon y \ mapsto [x, y]}  

Having written Jacobi's identity in the form

[x,[y,z]]=[y,[x,z]]+[[x,y],z]{\ displaystyle [x, [y, z]] = [y, [x, z]] + [[x, y], z]}  

we get that it is equivalent to the condition for the Leibniz rule for the operatoradx {\ displaystyle \ mathrm {ad} _ {x}}   :

adx[y,z]=[adxy,z]+[y,adxz]{\ displaystyle \ mathrm {ad} _ {x} \, [y, z] = [\ mathrm {ad} _ {x} \, y, z] + [y, \ mathrm {ad} _ {x} \ , z]}  

In this way,adx {\ displaystyle \ mathrm {ad} _ {x}}   Is a differentiation in a Lie algebra. Any such differentiation is called internal .

Jacobi’s identity can also be given the form

ad[x,y]=[adx,ady]=adxady-adyadx{\ displaystyle \ mathrm {ad} _ {[x, y]} = [\ mathrm {ad} _ {x}, \ mathrm {ad} _ {y}] = \ mathrm {ad} _ {x} \ mathrm {ad} _ {y} - \ mathrm {ad} _ {y} \ mathrm {ad} _ {x}}  

This means that the operatorad {\ displaystyle \ mathrm {ad}}   defines a homomorphism of a given Lie algebra into the Lie algebra of its derivations.

Jacobi Graduated Identity

Let beΩ=⊕iΩi {\ displaystyle \ Omega = \ oplus _ {i} \ Omega ^ {i}}   - graded algebra ,[⋅,⋅] {\ displaystyle [\ cdot, \ cdot]}   - multiplication in it. They say that multiplication inΩ {\ displaystyle \ Omega}   satisfies the graded Jacobi identity if for any elementsωi∈Ωi {\ displaystyle \ omega _ {i} \ in \ Omega ^ {i}}  

[ωm,[ωk,ωl]=[[ωm,ωk],ωl]+(-one)mk[ωk,[ωm,ωl]{\ displaystyle [\ omega _ {m}, [\ omega _ {k}, \ omega _ {l}] = [[\ omega _ {m}, \ omega _ {k}], \ omega _ {l} ] + (- 1) ^ {mk} [\ omega _ {k}, [\ omega _ {m}, \ omega _ {l}]}  

Examples

  • algebra of external forms ;
  • differentiation algebra of differential forms ;
  • algebra of tangential-valued forms with multiplication defined by FN- brackets or NR- brackets;
Source - https://ru.wikipedia.org/w/index.php?title=Jacobi Identity&oldid = 97819587


More articles:

  • FIBA Euroleague Playoffs (Women) 2015/2016
  • Boyko, Anatoly Grigorievich
  • Miram, Edward Ernestovich
  • Dryaglovsky
  • Mugai (village)
  • (766) Moguntia
  • Zhanghenglong
  • Anthem of Montenegro
  • Budberg, Andrey Andreyevich von
  • Mwoon

All articles

Clever Geek | 2019