Let be {\ displaystyle X} - any topological space .
Singular simplex dimension {\ displaystyle k} - it's a couple {\ displaystyle (\ Delta ^ {k}, f)} Where {\ displaystyle \ Delta ^ {k}} Is a standard simplex {\ displaystyle \ langle a_ {0}, a_ {1}, ... ~ a_ {k} \ rangle} , but {\ displaystyle f} - its continuous mapping to {\ displaystyle X} ; {\ displaystyle f: \ Delta ^ {k} \ to X} .
The group of singular chains is defined as the set of formal linear combinations:
- {\ displaystyle c_ {k} = \ sum _ {i} z_ {i} (\ Delta ^ {k}, f_ {i})} with integer (usually they are also considered limited) coefficients {\ displaystyle z_ {i}} .
For linear display {\ displaystyle s _ {\ pi}: \ Delta ^ {k} \ to \ Delta ^ {k}} determined by the permutation {\ displaystyle \ pi} points {\ displaystyle (a_ {0}, a_ {1}, ... ~ a_ {k})} believe {\ displaystyle (\ Delta ^ {k}, f) = (- 1) ^ {\ pi} (\ Delta ^ {k}, f \ circ s _ {\ pi})} .
Boundary operator {\ displaystyle \ partial} defined on a singular simplex {\ displaystyle (\ Delta _ {k}, f)} So:
- {\ displaystyle \ partial (\ Delta _ {k}, f) = \ sum _ {i} (- 1) ^ {i} (\ Delta _ {k-1}, f_ {i})} ,
Where {\ displaystyle \ Delta _ {k-1}} standard {\ displaystyle (k-1)} -dimensional simplex, and {\ displaystyle f_ {i} = f \ circ \ epsilon _ {i}} where {\ displaystyle \ epsilon _ {i}} - this is its mapping to {\ displaystyle i} side of standard simplex {\ displaystyle \ Delta ^ {k} (\ langle a_ {0}, ... ~ {\ hat {a_ {i}}}, ... ~ a_ {k} \ rangle)} .
Similarly, simplicial homology proves that {\ displaystyle \ partial \ partial = 0} .
As before, the concepts of singular cycles are introduced - such chains {\ displaystyle c_ {k}} , what {\ displaystyle \ partial {c_ {k}} = 0} and boundaries - chains {\ displaystyle c_ {k} = \ partial {c_ {k + 1}}} for some {\ displaystyle c_ {k + 1}} .
Factor group of cycles on the group of boundaries {\ displaystyle H_ {k} = Z_ {k} / B_ {k}} is called a singular homology group .
Example
Let us find, for example, the singular homology of a space from one point {\ displaystyle X = *} .
For each dimension there is only one single mapping. {\ displaystyle f ^ {k}: \ Delta ^ {k} \ to *} .
Simplex Border {\ displaystyle \ partial _ {k} (\ Delta ^ {k}, f ^ {k}) = \ sum (-1) ^ {i} (\ Delta ^ {k-1}, f_ {i} ^ { k-1})} where is everyone {\ displaystyle f_ {i} ^ {k-1}} are equal since they display the simplex in one point (we denote {\ displaystyle f ^ {k-1}} ).
So:
- {\ displaystyle \ partial (\ Delta ^ {k}, f ^ {k}) = 0} , if a {\ displaystyle k} odd (the total number of members is even, and the signs alternate);
- {\ displaystyle \ partial (\ Delta ^ {k}, f ^ {k}) = (\ Delta ^ {k-1}, f ^ {k-1})} , if a {\ displaystyle k \ not = 0} and even;
- {\ displaystyle \ partial (\ Delta ^ {k}, f ^ {k}) = 0} , if a {\ displaystyle k = 0} .
From here we get for zero dimension: {\ displaystyle Z_ {0} = C_ {0} = \ mathbb {Z}; \ quad B_ {0} = 0; \ quad H_ {0} = \ mathbb {Z}.}
For an odd dimension {\ displaystyle k = 2n-1: Z_ {k} = C_ {k} = \ mathbb {Z}; \ quad B_ {k} = \ mathbb {Z}; \ quad H_ {k} = 0.}
For even dimension {\ displaystyle k = 2n \ not = 0: Z_ {k} = 0; \ quad B_ {k} = 0; \ quad H_ {k} = 0.}
That is, the homology group is equal to {\ displaystyle \ mathbb {Z}} for zero dimension and zero for all positive dimensions.
It is possible to prove that singular homology on a set of polyhedra coincides with previously defined simplicial ones.
History
Singular homology was introduced by Lefschetz .