Clever Geek Handbook
📜 ⬆️ ⬇️

Singular homology

Singular homology is a homology theory in which invariance and functoriality immediately become obvious, but the basic definition requires working with infinite-dimensional spaces.

Build

Let beX {\ displaystyle X}   - any topological space .

Singular simplex dimensionk {\ displaystyle k}   - it's a couple(Δk,f) {\ displaystyle (\ Delta ^ {k}, f)}   WhereΔk {\ displaystyle \ Delta ^ {k}}   Is a standard simplex⟨a0,aone,...ak⟩ {\ displaystyle \ langle a_ {0}, a_ {1}, ... ~ a_ {k} \ rangle}   , butf {\ displaystyle f}   - its continuous mapping toX {\ displaystyle X}   ;f:Δk→X {\ displaystyle f: \ Delta ^ {k} \ to X}   .

The group of singular chains is defined as the set of formal linear combinations:

ck=Σizi(Δk,fi){\ displaystyle c_ {k} = \ sum _ {i} z_ {i} (\ Delta ^ {k}, f_ {i})}   with integer (usually they are also considered limited) coefficientszi {\ displaystyle z_ {i}}   .

For linear displaysπ:Δk→Δk {\ displaystyle s _ {\ pi}: \ Delta ^ {k} \ to \ Delta ^ {k}}   determined by the permutationπ {\ displaystyle \ pi}   points(a0,aone,...ak) {\ displaystyle (a_ {0}, a_ {1}, ... ~ a_ {k})}   believe(Δk,f)=(-one)π(Δk,f∘sπ) {\ displaystyle (\ Delta ^ {k}, f) = (- 1) ^ {\ pi} (\ Delta ^ {k}, f \ circ s _ {\ pi})}   .

Boundary operator∂ {\ displaystyle \ partial}   defined on a singular simplex(Δk,f) {\ displaystyle (\ Delta _ {k}, f)}   So:

∂(Δk,f)=Σi(-one)i(Δk-one,fi){\ displaystyle \ partial (\ Delta _ {k}, f) = \ sum _ {i} (- 1) ^ {i} (\ Delta _ {k-1}, f_ {i})}   ,

WhereΔk-one {\ displaystyle \ Delta _ {k-1}}   standard(k-one) {\ displaystyle (k-1)}   -dimensional simplex, andfi=f∘εi {\ displaystyle f_ {i} = f \ circ \ epsilon _ {i}}   whereεi {\ displaystyle \ epsilon _ {i}}   - this is its mapping toi {\ displaystyle i}   side of standard simplexΔk(⟨a0,...ai^,...ak⟩) {\ displaystyle \ Delta ^ {k} (\ langle a_ {0}, ... ~ {\ hat {a_ {i}}}, ... ~ a_ {k} \ rangle)}   .

Similarly, simplicial homology proves that∂∂=0 {\ displaystyle \ partial \ partial = 0}   .

As before, the concepts of singular cycles are introduced - such chainsck {\ displaystyle c_ {k}}   , what∂ck=0 {\ displaystyle \ partial {c_ {k}} = 0}   and boundaries - chainsck=∂ck+one {\ displaystyle c_ {k} = \ partial {c_ {k + 1}}}   for someck+one {\ displaystyle c_ {k + 1}}   .

Factor group of cycles on the group of boundariesHk=Zk/Bk {\ displaystyle H_ {k} = Z_ {k} / B_ {k}}   is called a singular homology group .

Example

Let us find, for example, the singular homology of a space from one pointX=∗ {\ displaystyle X = *}   .

For each dimension there is only one single mapping.fk:Δk→∗ {\ displaystyle f ^ {k}: \ Delta ^ {k} \ to *}   .

Simplex Border∂k(Δk,fk)=Σ(-one)i(Δk-one,fik-one) {\ displaystyle \ partial _ {k} (\ Delta ^ {k}, f ^ {k}) = \ sum (-1) ^ {i} (\ Delta ^ {k-1}, f_ {i} ^ { k-1})}   where is everyonefik-one {\ displaystyle f_ {i} ^ {k-1}}   are equal since they display the simplex in one point (we denotefk-one {\ displaystyle f ^ {k-1}}   ).

So:

∂(Δk,fk)=0{\ displaystyle \ partial (\ Delta ^ {k}, f ^ {k}) = 0}   , if ak {\ displaystyle k}   odd (the total number of members is even, and the signs alternate);
∂(Δk,fk)=(Δk-one,fk-one){\ displaystyle \ partial (\ Delta ^ {k}, f ^ {k}) = (\ Delta ^ {k-1}, f ^ {k-1})}   , if ak≠0 {\ displaystyle k \ not = 0}   and even;
∂(Δk,fk)=0{\ displaystyle \ partial (\ Delta ^ {k}, f ^ {k}) = 0}   , if ak=0 {\ displaystyle k = 0}   .

From here we get for zero dimension:Z0=C0=Z;B0=0;H0=Z. {\ displaystyle Z_ {0} = C_ {0} = \ mathbb {Z}; \ quad B_ {0} = 0; \ quad H_ {0} = \ mathbb {Z}.}  

For an odd dimensionk=2n-one:Zk=Ck=Z;Bk=Z;Hk=0 {\ displaystyle k = 2n-1: Z_ {k} = C_ {k} = \ mathbb {Z}; \ quad B_ {k} = \ mathbb {Z}; \ quad H_ {k} = 0.}  

For even dimensionk=2n≠0:Zk=0;Bk=0;Hk=0 {\ displaystyle k = 2n \ not = 0: Z_ {k} = 0; \ quad B_ {k} = 0; \ quad H_ {k} = 0.}  

That is, the homology group is equal toZ {\ displaystyle \ mathbb {Z}}   for zero dimension and zero for all positive dimensions.

It is possible to prove that singular homology on a set of polyhedra coincides with previously defined simplicial ones.

History

Singular homology was introduced by Lefschetz .

Source - https://ru.wikipedia.org/w/index.php?title=Singular_homology&oldid=97917750


More articles:

  • Pana (Gabon)
  • TT55
  • Niagara Peninsula
  • Conditional Probability Method
  • Kozhemyakin, Vladislav Vyacheslavovich
  • Goy, Mechislav Bronislavovich
  • Studnev, Alexander Viktorovich
  • Same-sex marriage in the Republic of China
  • Northern Bauchi
  • The Love Club (song)

All articles

Clever Geek | 2019