Clever Geek Handbook
📜 ⬆️ ⬇️

Power distribution noise

Noise distribution occurs in the active elements of electronics (bipolar transistors, electronic tubes) due to the random nature of the distribution of current between two circuits. For example, current distribution noise is present in bipolar transistors , since electric charge carriers injected from the emitter may with probabilityλ {\ displaystyle \ lambda} \ lambda recombine in the base, and with probabilityone-λ {\ displaystyle 1- \ lambda} {\ displaystyle 1- \ lambda} reach the collector [1] .

Spectral Density

Consider an electric circuit in which per unit timen0 {\ displaystyle n_ {0}}   charge carriers and which are then randomly distributed between circuitsone {\ displaystyle 1}   and2 {\ displaystyle 2}   . Let the probability of the distribution of charges in the circuitone {\ displaystyle 1}   is equal toλ {\ displaystyle \ lambda}   , but in the chain2 {\ displaystyle 2}   -one-λ {\ displaystyle 1- \ lambda}   . In the chainone {\ displaystyle 1}   arrivesnone {\ displaystyle n1}   charge carriers in a circuit2 {\ displaystyle 2}   arrivesn2=n0-none {\ displaystyle n2 = n0-n1}   charge carriers. The law of distribution of the number of current pulses in a circuitone {\ displaystyle 1}   is binomial:Pn(none)=n0!none!(n0-n-one)!λnone(one-λ)n0-none {\ displaystyle P_ {n} (n_ {1}) = {\ frac {n_ {0}!} {n_ {1}! (n_ {0} -n- {1})!}} \ lambda ^ {n_ {1}} (1- \ lambda) ^ {n_ {0} -n_ {1}}}   . For averages, we have:none¯=λn0,n2¯=(one-λ)n0 {\ displaystyle {\ bar {n_ {1}}} = \ lambda n_ {0}, {\ bar {n_ {2}}} = (1- \ lambda) n_ {0}}   . For the dispersion of the number of pulses in the circuitone {\ displaystyle 1}   we have:σnone=none2¯-(none¯)2=λ(one-λ)n0 {\ displaystyle \ sigma _ {n_ {1}} = {\ bar {n_ {1} ^ {2}}} - ({\ bar {n_ {1}}}) ^ {2} = \ lambda (1- \ lambda) n_ {0}}   If the passage of each current pulse is associated with charge transferq {\ displaystyle q}   then the spectral density of the noise current distributionid {\ displaystyle i_ {d}}   can be written as:σid(ω)=2λ(one-λ)n0q2|si0(jω)|2=(one-λ)2qI0(one)|si0(jω)|2 {\ displaystyle \ sigma _ {id} (\ omega) = 2 \ lambda (1- \ lambda) n_ {0} q ^ {2} \ left | s_ {i} ^ {0} (j \ omega) \ right | ^ {2} = (1- \ lambda) 2qI_ {0} ^ {(1)} \ left | s_ {i} ^ {0} (j \ omega) \ right | ^ {2}}   . HereI0(one)=λn0q {\ displaystyle I_ {0} ^ {(1)} = \ lambda n_ {0} q}   - current in the circuitone {\ displaystyle 1}   , butsi0(jω) {\ displaystyle s_ {i} ^ {0} (j \ omega)}   - normalized current pulse spectrum. If the current pulses associated with the motion of charge carriers in the nonequilibrium region have a durationten-eleven {\ displaystyle 10 ^ {- 11}}   s, then to frequencyone,6∗tenten {\ displaystyle 1.6 * 10 ^ {10}}   Hz (centimeter waves) the noise distribution current can be considered white. In this frequency range [2] :σid(ω)=(one-λ)2qI0(one) {\ displaystyle \ sigma _ {id} (\ omega) = (1- \ lambda) 2qI_ {0} ^ {(1)}}  

Notes

  1. ↑ Jaloud, 1977 , p. 27.
  2. ↑ Jaloud, 1977 , p. 28.

Literature

  • Zhalud V., Kuleshov V.N. Noises in semiconductor devices. - M .: Soviet Radio, 1977 .-- 416 p.
Source - https://ru.wikipedia.org/w/index.php?title= Noise distribution &oldid = 84511417


More articles:

  • Barma's Greek Work
  • Anti-Nuclear Movement in Austria
  • Memorial Wall of Memory (Bataysk)
  • Chuev, Sergey Gennadyevich
  • Sukhoryabov, Vladimir Vikentevich
  • Yusupov, Rysbek
  • Andre Cavans Prize
  • Desire (film, 1946)
  • Wilhelm Henry (Prince of Nassau-Saarbrücken)
  • Jerin Hogarth

All articles

Clever Geek | 2019