Clever Geek Handbook
📜 ⬆️ ⬇️

Perron - Frobenius operator

The Perron – Frobenius operator is an operator that describes the change in probability density over time in the phase space of states of a dynamical system . Named after the German mathematicians Ferdinand Frobenius and Oscar Perron .

Content

Definition

Consider the ensemble of trajectories of a dynamical system, the initial data for which are distributed in phase space with a certain probability densityP(x) {\ displaystyle P (x)}   . Let the state of a dynamic system in phase space change over timex(t)=φ(x,t) {\ displaystyle x (t) = \ varphi (x, t)}   . In this case, the probability density changes:P(x,t)=L(P(x),t) {\ displaystyle P (x, t) = L (P (x), t)}   . OperatorL {\ displaystyle L}   is called the Perron-Frobenius operator [1] .

Examples

  • Consider the mappingxn+one=f(xn) {\ displaystyle x_ {n + 1} = f (x_ {n})}   . Let onn {\ displaystyle n}   -th step in the phase space, the probability densitypn(x) {\ displaystyle p_ {n} (x)}   . Then for the probability density in the next step we get:pn+one(y)=∫δ(f(x)-y)pn(x)dx=L(pn) {\ displaystyle p_ {n + 1} (y) = \ int \ delta (f (x) -y) p_ {n} (x) dx = L (p_ {n})}   . Here is the operatorL {\ displaystyle L}   called the Perron-Frobenius operator for mappingf(x) {\ displaystyle f (x)}   [2] . He is a linear non-self-adjoint operator .

See also

  • Frobenius-Perron Theorem

Notes

  1. ↑ Nonlinear Dynamics and Chaos, 2011 , p. 159.
  2. ↑ Nonlinear Dynamics and Chaos, 2011 , p. 168.

Literature

  • Malinetskii G. G. , Potapov A. B. Non-linear dynamics and chaos: basic concepts. - M .: Librocom, 2011 .-- 240 p. - ISBN 978-5-397-01583-7 .
Source - https://ru.wikipedia.org/w/index.php?title=Perron___Frobenius operator&oldid = 91629353


More articles:

  • Repnins
  • Morales Angel
  • Dubinetsky, Zakhar Vasilievich
  • Tinalini, Juan
  • OCPP
  • Shaumyan, Sebastian Konstantinovich
  • Brul-i-Vignoles, Joan
  • Cross-country skiing at the 2017 World Ski Championships - 4 × 10 km relay (men)
  • Tatfondbank
  • Newfeld Danny

All articles

Clever Geek | 2019