Clever Geek Handbook
📜 ⬆️ ⬇️

Golden rhombus

Gold rhombus - a rhombus whose diagonals relate to each other asφ {\ displaystyle \ varphi} \ varphi whereφ≈one,618 {\ displaystyle \ varphi \ approx 1,618} {\ displaystyle \ varphi \ approx 1,618} ( golden ratio ).

Golden rhombus

Properties

The angles of the golden diamond are:

  • Acute angles:2arctan⁡oneφ=arctan⁡2≈63,43495 {\ displaystyle 2 \ arctan {\ frac {1} {\ varphi}} = \ arctan 2 \ approx 63,43495}   °
  • Dull corners:2arctan⁡φ=arctan⁡one+arctan⁡3≈116,56505 {\ displaystyle 2 \ arctan \ varphi = \ arctan 1+ \ arctan 3 \ approx 116,56505}   °, which coincide with the dihedral angle of the dodecahedron .

The ratio of the side of the golden rhombus to its short diagonal isone2one+φ2=onefour10+25≈0.95106 {\ displaystyle {\ frac {1} {2}} {\ sqrt {1+ \ varphi ^ {2}}} = {\ frac {1} {4}} {\ sqrt {10 + 2 {\ sqrt {5 }}}} \ approx 0.95106}   .

The lengths of the diagonals of a gold rhombus with a length of 1 are equal to:

p=2+2510+25≈1.70130{\ displaystyle p = {\ frac {2 + 2 {\ sqrt {5}}} {\ sqrt {10 + 2 {\ sqrt {5}}}}} approx 1.70130}  
q=four10+25≈1.05146{\ displaystyle q = {\ frac {4} {\ sqrt {10 + 2 {\ sqrt {5}}}} \ approx 1.05146}  

The radius of the inscribed circle of the golden rhombus ispφ2(5+5) {\ displaystyle {\ frac {p \ varphi} {\ sqrt {2 (5 + {\ sqrt {5}})}}}}   .

The area of ​​the golden diamond isp2one+5 {\ displaystyle {\ frac {p ^ {2}} {1 + {\ sqrt {5}}}}}   . [one]

A golden rectangle can be described around a golden rhombus.

See also

  • Golden rectangle
  • Golden ratio
  • Golden Triangle
  • Rhombus

Notes

  1. ↑ Weisstein, Eric W. Golden Rhombus . mathworld.wolfram.com. Date of treatment December 29, 2016.
Source - https://ru.wikipedia.org/w/index.php?title=Golden_Lomb&oldid=83279668


More articles:

  • Automatically Writing Music
  • Leicestershire Pork Pie
  • Veselovo (East Kazakhstan Region)
  • Boychenko, Gavriil Moiseevich
  • Golovin, Sergey Selivanovich
  • Boundary View
  • Degtyarsky Mine Administration
  • Canadian Men's Curling Championship 2004
  • Kochemasov, Stanislav Grigorievich
  • Liu Guizhen

All articles

Clever Geek | 2019