Clever Geek Handbook
📜 ⬆️ ⬇️

120 mesh cells

120 mesh cells
(No images)
Type ofCorrect hyperbolic honeycombs
Schläfli Symbol{5.3,3,3}
Coxeter - Dynkin diagramsCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-facetsSchlegel wireframe 120-cell.png {5.3,3}
CellsDodecahedron.svg {5.3}
Verge ofRegular polygon 5 annotated.svg {five}
Facet figureRegular polygon 3 annotated.svg {3}
Rib figureTetrahedron.png {3.3}
Vertex figureSchlegel wireframe 5-cell.png {3.3,3}
Dual Honeycombs
Coxeter groupH 4 , [5,3,3,3]
PropertiesRight

In the geometry of hyperbolic spaces, 120-mesh cells are one of five compact regular fill tier spaces ( cells ). Having a Schläfli {5,3,3,3} symbol , the honeycombs have three hundred and five headers around each face. Its dual polyhedron is a , {3,3,3,5}.

Content

Associated Honeycomb

These cells are associated with , {5,3,3,4} and , {5,3,3,5}.

Honeycombs are topologically similar to the final penteract , {4,3,3,3}, and hexaterone , {3,3,3,3}.

They are also similar to the one-hundred- and - one cell , {5,3,3}, and the dodecahedron , {5,3}.

See also

  • List of valid multidimensional polyhedra and compounds

Notes

Literature

  • HSM Coxeter . Tables I and II: Regular polytopes and honeycombs // Regular Polytopes . - 3rd. ed .. - Dover Publications, 1973. - p. 294–296. - ISBN 0-486-61480-8 ..
  • HSM Coxeter . Chapter 10: Regular Honeycombs in Hyperbolic Space; Summary Tables II, III, IV, V // The Beauty of Geometry: Twelve Essays. - Dover Publications, 1999. - p. 212-213. - ISBN 0-486-40919-8 .
Source - https://ru.wikipedia.org/w/index.php?title=120- cell_sots & idid = 99141221


More articles:

  • Benedek, Hoana
  • Mallohi, Tal
  • Jimenez, Susana
  • Delvin, Pavel Illarionovich
  • Gelvig, Roman Ivanovich
  • Reichsfeld
  • Homeland Defense Forces
  • Aksai Military History Museum
  • Mirza Beibaba Fena
  • Management Circular of the Petersburg School District

All articles

Clever Geek | 2019