Clever Geek Handbook
📜 ⬆️ ⬇️

Incorrect prior distribution

An incorrect a priori distribution is a situation when, in the Bayes theorem, the sum (integral) of a priori probabilities does not yield 1 or is not limited at all.

Justification

If Bayes's theorem is written as follows:

P(Ai∣B)=P(B∣Ai)P(Ai)∑jP(B∣Aj)P(Aj),{\ displaystyle P (A_ {i} \ mid B) = {\ frac {P (B \ mid A_ {i}) P (A_ {i})} {\ sum _ {j} P (B \ mid A_ { j}) P (A_ {j})}} \ ,,}  

it becomes clear that it will remain true if all a priori probabilitiesP(Ai) {\ displaystyle P (A_ {i})}   andP(Aj) {\ displaystyle P (A_ {j})}   multiply by a constant.

The posterior probabilities will still in total (or upon integration) give 1, regardless of the absolute values ​​of the a priori probabilities.

Source - https://ru.wikipedia.org/w/index.php?title= Incorrect_aprior_ distribution &oldid = 98341201


More articles:

  • Andreeva, Elena Leonidovna
  • Lekerica, Jose Felix de
  • Osipov, Artur Stanislavovich
  • Gavrish, Mikhail Nikolaevich
  • Korotchenko, Alexander Demianovich
  • Tenno, Artur Danilovich
  • Flight Span
  • Orsag, Jiri
  • Kubasov, Valery Nikolaevich
  • Nasimoto-no-mia Morimasa

All articles

Clever Geek | 2019