Clever Geek Handbook
📜 ⬆️ ⬇️

Cylindrical coordinate system

Point in cylindrical coordinates.

A cylindrical coordinate system is a three-dimensional coordinate system , which is an extension of the polar coordinate system by adding a third coordinate (usually denotedz {\ displaystyle z} z ), which sets the height of the point above the plane.

PointP {\ displaystyle P} P given as(ρ,φ,z) {\ displaystyle (\ rho, \; \ varphi, \; z)} (\ rho, \; \ varphi, \; z) . In terms of a rectangular coordinate system :

  • ρ⩾0{\ displaystyle \ rho \ geqslant 0} \ rho \ geqslant 0 - distance fromO {\ displaystyle O} O beforeP′ {\ displaystyle P '} P ' , orthogonal projection of a pointP {\ displaystyle P} P to the planeXY {\ displaystyle XY} Xy . Or the same as the distance fromP {\ displaystyle P} P to the axisZ {\ displaystyle Z} Z .
  • 0⩽φ<360∘{\ displaystyle 0 \ leqslant \ varphi <360 ^ {\ circ}} 0 \ leqslant \ varphi <360 ^ {\ circ} - angle between axisX {\ displaystyle X} X and segmentOP′ {\ displaystyle OP '} OP ' .
  • z{\ displaystyle z} z equal to applicate pointP {\ displaystyle P} P .

When used in the physical sciences and technology, the international standard ISO 31-11 recommends the use of the notation(ρ,φ,z) {\ displaystyle (\ rho, \; \ varphi, \; z)} (\ rho, \; \ varphi, \; z) .

Cylindrical coordinates are useful when analyzing surfaces that are symmetrical about an axis if the axisZ {\ displaystyle Z} Z take as the axis of symmetry. For example, an infinitely long round cylinder (cylindrical surface) in rectangular coordinates has the equationx2+y2=c2 {\ displaystyle x ^ {2} + y ^ {2} = c ^ {2}} x ^ {2} + y ^ {2} = c ^ {2} , and in cylindrical - a very simple equationρ=c {\ displaystyle \ rho = c} \ rho = c . From here comes the name "cylindrical" for a given coordinate system.

Content

Transition to other coordinate systems

 
2 points in cylindrical coordinates.

Since a cylindrical coordinate system is only one of many three-dimensional coordinate systems, there are laws for the transformation of coordinates between a cylindrical coordinate system and other systems.

Cartesian coordinate system

The unit vectors of the cylindrical coordinate system are related to the Cartesian unit vectors by the following relations:

{e→ρ=cos⁡φe→x+sin⁡φe→y,e→φ=-sin⁡φe→x+cos⁡φe→y,e→z=e→z,{\ displaystyle {\ begin {cases} {\ vec {e}} _ {\ rho} = \ cos \ varphi {\ vec {e}} _ {x} + \ sin \ varphi {\ vec {e}} _ {y}, \\ {\ vec {e}} _ {\ varphi} = - \ sin \ varphi {\ vec {e}} _ {x} + \ cos \ varphi {\ vec {e}} _ {y }, \\ {\ vec {e}} _ {z} = {\ vec {e}} _ {z}, \ end {cases}}}  

and form the right three:

{e→ρ×e→φ=e→z,e→z×e→ρ=e→φ,e→φ×e→z=e→ρ.{\ displaystyle {\ begin {cases} {\ vec {e}} _ {\ rho} \ times {\ vec {e}} _ {\ varphi} = {\ vec {e}} _ {z}, \\ {\ vec {e}} _ {z} \ times {\ vec {e}} _ {\ rho} = {\ vec {e}} _ {\ varphi}, \\ {\ vec {e}} _ { \ varphi} \ times {\ vec {e}} _ {z} = {\ vec {e}} _ {\ rho}. \ end {cases}}}  

The inverse relations have the form:

{e→x=cos⁡φe→ρ-sin⁡φe→φ,e→y=sin⁡φe→ρ+cos⁡φe→φ,e→z=e→z.{\ displaystyle {\ begin {cases} {\ vec {e}} _ {x} = \ cos \ varphi {\ vec {e}} _ {\ rho} - \ sin \ varphi {\ vec {e}} _ {\ varphi}, \\ {\ vec {e}} _ {y} = \ sin \ varphi {\ vec {e}} _ {\ rho} + \ cos \ varphi {\ vec {e}} _ {\ varphi}, \\ {\ vec {e}} _ {z} = {\ vec {e}} _ {z}. \ end {cases}}}  

The law of transformation of coordinates from cylindrical to Cartesian:

{x=ρcos⁡φ,y=ρsin⁡φ,z=z.{\ displaystyle {\ begin {cases} x = \ rho \ cos \ varphi, \\ y = \ rho \ sin \ varphi, \\ z = z. \ end {cases}}}  

The law of transformation of coordinates from Cartesian to cylindrical:

{ρ=x2+y2,φ=arctg(yx),z=z.{\ displaystyle {\ begin {cases} \ rho = {\ sqrt {x ^ {2} + y ^ {2}}}, \\\ varphi = \ mathrm {arctg} \ left ({\ dfrac {y} { x}} \ right), \\ z = z. \ end {cases}}}  

Jacobian is equal to:

J=ρ.{\ displaystyle J = \ rho.}  

Differential characteristics

The cylindrical coordinates are orthogonal, therefore, the metric tensor has the diagonal form in them:

gij=(one000ρ2000one),gij=(one000one/ρ2000one).{\ displaystyle g_ {ij} = {\ begin {pmatrix} 1 & 0 & 0 \\ 0 & \ rho ^ {2} & 0 \\ 0 & 0 & 1 \ end {pmatrix}}, \ quad g ^ {ij} = {\ begin {pmatrix} 1 & 0 & 0 \\ 0 & 1 / \ rho ^ {2} & 0 \\ 0 & 0 & 1 \ end {pmatrix}}.}  
  • Differential squared curve length
ds2=dρ2+ρ2dφ2+dz2.{\ displaystyle ds ^ {2} = d \ rho ^ {2} + \ rho ^ {2} \, d \ varphi ^ {2} + dz ^ {2}.}  
  • Lame coefficients have the form:
Hρ=one,Hφ=ρ,Hz=one.{\ displaystyle H _ {\ rho} = 1, \ quad H _ {\ varphi} = \ rho, \ quad H_ {z} = 1.}  
  • Christoffel Symbols{ρ,φ,z} {\ displaystyle \ {\ rho, \; \ varphi, \; z \}}   :
Γ22one=-ρ,Γ212=Γ122=oneρ.{\ displaystyle \ Gamma _ {22} ^ {1} = - \ rho, \ quad \ Gamma _ {21} ^ {2} = \ Gamma _ {12} ^ {2} = {\ frac {1} {\ rho}}.}  

The rest are zero.

Differential Operators

Gradient in a cylindrical coordinate system:

gradψ=e→ρ∂ψ∂ρ+e→φoneρ∂ψ∂φ+e→z∂ψ∂z.{\ displaystyle \ mathrm {grad} \, \ psi = {\ vec {e}} _ {\ rho} {\ frac {\ partial \ psi} {\ partial \ rho}} + {\ vec {e}} _ {\ varphi} {\ frac {1} {\ rho}} {\ frac {\ partial \ psi} {\ partial \ varphi}} + {\ vec {e}} _ {z} {\ frac {\ partial \ psi} {\ partial z}}.}  

Divergence in a cylindrical coordinate system:

diva→=oneρ∂ρaρ∂ρ+oneρ∂aφ∂φ+∂az∂z.{\ displaystyle \ mathrm {div} \, {\ vec {a}} = {\ frac {1} {\ rho}} {\ frac {\ partial \ rho a _ {\ rho}} {\ partial \ rho}} + {\ frac {1} {\ rho}} {\ frac {\ partial a _ {\ varphi}} {\ partial \ varphi}} + {\ frac {\ partial a_ {z}} {\ partial z}}. }  

Rotor in a cylindrical coordinate system:

rota→=det(oneρe→ρe→φoneρe→z∂∂ρ∂∂φ∂∂zaρρaφaz)=e→ρ(oneρ∂az∂φ-∂aφ∂z)+e→φ(∂aρ∂z-∂az∂ρ)+e→z(oneρ∂ρaφ∂ρ-oneρ∂aρ∂φ).{\ displaystyle \ mathrm {rot} \, {\ vec {a}} = \ mathrm {det} {\ begin {pmatrix} {\ frac {1} {\ rho}} {\ vec {e}} _ {\ rho} & {\ vec {e}} _ {\ varphi} & {\ frac {1} {\ rho}} {\ vec {e}} _ {z} \\ {\ frac {\ partial} {\ partial \ rho}} & {\ frac {\ partial} {\ partial \ varphi}} & {\ frac {\ partial} {\ partial z}} \\ a _ {\ rho} & \ rho a _ {\ varphi} & \ a_ {z} \ end {pmatrix}} = {\ vec {e}} _ {\ rho} \ left ({\ frac {1} {\ rho}} {\ frac {\ partial a_ {z}} {\ partial \ varphi}} - {\ frac {\ partial a _ {\ varphi}} {\ partial z}} \ right) + {\ vec {e}} _ {\ varphi} \ left ({\ frac {\ partial a_ {\ rho}} {\ partial z}} - {\ frac {\ partial a_ {z}} {\ partial \ rho}} \ right) + {\ vec {e}} _ {z} \ left ({\ frac {1} {\ rho}} {\ frac {\ partial \ rho a _ {\ varphi}} {\ partial \ rho}} - {\ frac {1} {\ rho}} {\ frac {\ partial a_ { \ rho}} {\ partial \ varphi}} \ right).}  

Expressions for the radius vector , velocity and acceleration in cylindrical coordinates

r(t)=ρe→ρ+ze→z{\ displaystyle r (t) = \ rho {\ vec {e}} _ {\ rho} + z {\ vec {e}} _ {z}}  

r˙(t)=ρ˙e→ρ+ρφ˙e→φ+z˙e→z{\ displaystyle {\ dot {r}} (t) = {\ dot {\ rho}} {\ vec {e}} _ {\ rho} + \ rho {\ dot {\ varphi}} {\ vec {e }} _ {\ varphi} + {\ dot {z}} {\ vec {e}} _ {z}}  

r¨(t)=(ρ¨-ρφ˙2)e→ρ+(2ρ˙φ˙+φ¨ρ)e→φ+z¨e→z{\ displaystyle {\ ddot {r}} (t) = ({\ ddot {\ rho}} - \ rho {\ dot {\ varphi}} ^ {2}) {\ vec {e}} _ {\ rho } + (2 {\ dot {\ rho}} {\ dot {\ varphi}} + {\ ddot {\ varphi}} \ rho) {\ vec {e}} _ {\ varphi} + {\ ddot {z }} {\ vec {e}} _ {z}}  

See also

  • Euler angles
  • Cylindrical chess

Literature

  • Khalilov V.R., Chizhov G.A., Dynamics of classical systems: Textbook. allowance. - M.: Publishing House of Moscow State University, 1993 .-- 352 p.
Source - https://ru.wikipedia.org/w/index.php?title=Cylindrical_ coordinate_ system&oldid = 94206692


More articles:

  • Dogel, Ivan Mikhailovich
  • Quintana, Manuel Jose
  • Kolodezi (Leningrad Region)
  • Complaint book (story)
  • Fuchs, Ruth
  • Fliegerfaust
  • Hardware (station)
  • Ermeni, Abas
  • Biryukova, Vera Leonidovna
  • Apostolic Nuncio in Solomon Islands

All articles

Clever Geek | 2019