Clever Geek Handbook
📜 ⬆️ ⬇️

H-space

H -space is a generalization of the concept of a topological group of a certain type.

Definition

Connected topological spaceX {\ displaystyle X} X together with continuous display

μ:X×X→X{\ displaystyle \ mu \ colon X \ times X \ to X} {\displaystyle \mu \colon X\times X\to X}

with a single element , i.e. an elemente∈X {\ displaystyle e \ in X} {\displaystyle e\in X} such that

μ(e,x)=μ(x,e)=x{\ displaystyle \ mu (e, x) = \ mu (x, e) = x} {\displaystyle \mu (e,x)=\mu (x,e)=x}

for anyonex∈X {\ displaystyle x \ in X} x\in X called an H-space .

Remarks

  • Sometimes limited to the weaker condition that the mappingsx↦μ(e,x) {\ displaystyle x \ mapsto \ mu (e, x)} {\displaystyle x\mapsto \mu (e,x)} andx↦μ(x,e) {\ displaystyle x \ mapsto \ mu (x, e)} {\displaystyle x\mapsto \mu (x,e)} homotopic to the identity (sometimes with a fixede∈X {\ displaystyle e \ in X} {\displaystyle e\in X} )
    • These three definitions are equivalent for CW complexes .

Examples

  • Each topological group is an H- space.
  • For an arbitrary topological spaceX {\ displaystyle X} X spaceHX {\ displaystyle {\ mathcal {H}} _ {X}} {\displaystyle {\mathcal {H}}_{X}} all continuous mappingsX→X {\ displaystyle X \ to X} X\to X homotopic to the identity is an H- space.
    • Whereinμ:HX×HX→HX {\ displaystyle \ mu \ colon {\ mathcal {H}} _ {X} \ times {\ mathcal {H}} _ {X} \ to {\ mathcal {H}} _ {X}} {\displaystyle \mu \colon {\mathcal {H}}_{X}\times {\mathcal {H}}_{X}\to {\mathcal {H}}_{X}} can be defined as compositionμ(f,g)=f∘g {\ displaystyle \ mu (f, g) = f \ circ g} {\displaystyle \mu (f,g)=f\circ g} .
  • Among the spheres , onlyS0 {\ displaystyle \ mathbb {S} ^ {0}} {\displaystyle \mathbb {S} ^{0}} ,Sone {\ displaystyle \ mathbb {S} ^ {1}} {\displaystyle \mathbb {S} ^{1}} ,S3 {\ displaystyle \ mathbb {S} ^ {3}} {\displaystyle \mathbb {S} ^{3}} andS7 {\ displaystyle \ mathbb {S} ^ {7}} {\displaystyle \mathbb {S} ^{7}} are H- spaces. Wherein
    • Each of these spaces forms a subset of elements with a unit norm among real numbers , complex numbers , quaternions and octonions, respectively.
    • S0{\ displaystyle \ mathbb {S} ^ {0}} {\displaystyle \mathbb {S} ^{0}} ,Sone {\ displaystyle \ mathbb {S} ^ {1}} {\displaystyle \mathbb {S} ^{1}} andS3 {\ displaystyle \ mathbb {S} ^ {3}} {\displaystyle \mathbb {S} ^{3}} are Lie groups , andS7 {\ displaystyle \ mathbb {S} ^ {7}} {\displaystyle \mathbb {S} ^{7}} - not.

Properties

  • The fundamental group of an H- space is Abelian .

See also

  • Topological group
  • Cohomology of Alexandrov - Cech
  • Hopf Algebra

Links

  • Hatcher, Allen (2002), Algebraic Topology , Cambridge: Cambridge University Press, ISBN 0-521-79540-0 , < http://www.math.cornell.edu/~hatcher/AT/ATpage.html >   . Section 3.C
Source - https://ru.wikipedia.org/w/index.php?title=H-space&oldid=81746862


More articles:

  • Bausch (Khan)
  • Komsomolskaya CHPP-2
  • Indoor Athletics European Championship 1981 - 800m race (Women)
  • Ilonen, Mikko
  • Kampmann Martin
  • For Fidelity to Science
  • LVG C.I
  • Niskovsky County
  • Ivanovskaya-Ploshko, Sofia Feliksovna
  • Strzyzow County

All articles

Clever Geek | 2019