Clever Geek Handbook
📜 ⬆️ ⬇️

Bargman - Wigner Theorem

The Bargman - Wigner theorem is a theorem of axiomatic quantum field theory. It reveals the meaning of the concept of a universal covering group under Poincare transformations in relativistic quantum theory. It was proved by Yu. Wigner [1] and V. Bargman [2] .

Content

Wording

The state vectors during transformations from the Poincare’s own group are transformed according to the unitary representation of its universal covering (the quantum-mechanical Poincare’s own group) [3] .

In other words, from each rayT(a,Λ) {\ displaystyle T (a, \ Lambda)}   you can select one representativeU(a,Λ)∈T(a,Λ) {\ displaystyle U (a, \ Lambda) \ in T (a, \ Lambda)}   so that there are relations [4] :

U(0,one)=one,U(aone_,Aone)U(a2_,A2)=U(aone_+Aone∗a2Aone,AoneA2){\ displaystyle U (0,1) = 1, U ({\ underline {a_ {1}}}, A_ {1}) U ({\ underline {a_ {2}}}, A_ {2}) = U ({\ underline {a_ {1}}} + A_ {1} ^ {*} a_ {2} A_ {1}, A_ {1} A_ {2})}  

Wherea {\ displaystyle a}   defined by the formulax=xασα=x0σ0+xoneσone+x2σ2+x3σ3=(x0+x3xone-ix2xone+ix2x0-x3) {\ displaystyle x = x ^ {\ alpha} {\ sigma} _ {\ alpha} = x ^ {0} \ sigma _ {0} + x ^ {1} \ sigma _ {1} + x ^ {2} \ sigma _ {2} + x ^ {3} \ sigma _ {3} = {\ begin {pmatrix} x ^ {0} + x ^ {3} & x ^ {1} -ix ^ {2} \\ x ^ {1} + ix ^ {2} & x ^ {0} -x ^ {3} \ end {pmatrix}}}   .


Explanation

A ray is a state vector in a separable Hilbert space [5] . GroupG2 {\ displaystyle G_ {2}}   called the universal covering connected groupGone {\ displaystyle G_ {1}}   , if aG2 {\ displaystyle G_ {2}}   is a minimal simply connected group homomorphicGone {\ displaystyle G_ {1}}   [6] .x {\ displaystyle x}   is a four-dimensional vector [7] .σ0,...,σ3 {\ displaystyle \ sigma _ {0}, ..., \ sigma _ {3}}   - Pauli matrices [7] .

Notes

  1. ↑ Wigner EP On unitary representations of the inhomogenous Lorentz group // Annals of Mathematics . - 1939. - T. 40. - PP. 150-204. - URL: https://www.jstor.org/stable/1968551
  2. ↑ Bargmann V. On Unitary Ray Representations of Continuous Groups // Annals of Mathematics . - 1954. - T. 59. - S. 1–46. - URL: https://www.jstor.org/stable/1969831
  3. ↑ Bogolyubov, 1969 , p. 106.
  4. ↑ Bogolyubov, 1969 , p. 105.
  5. ↑ Bogolyubov, 1969 , p. 85.
  6. ↑ Bogolyubov, 1969 , p. 101.
  7. ↑ 1 2 Bogolyubov, 1969 , p. 99.

Literature

  • Bogolyubov N.N. , Logunov A.A. , Todorov I.T. Fundamentals of the axiomatic approach in quantum field theory. - M .: Nauka, 1969 .-- 424 p.
Source - https://ru.wikipedia.org/w/index.php?title=Bargman_— Wigner theorem&oldid = 88066951


More articles:

  • Abyrvalg
  • Leisen Mitchell
  • Gdansk County
  • Translatewiki.net
  • Simjurids
  • Baath (Syrian Regional Office)
  • Komsomolskaya CHPP-2
  • Indoor Athletics European Championship 1981 - 800m race (Women)
  • Ilonen, Mikko
  • Kampmann Martin

All articles

Clever Geek | 2019