Clever Geek Handbook
📜 ⬆️ ⬇️

Quantum Cramer - Rao Inequality

The quantum Cramer – Rao inequality is the lower bound inequality for the standard error in quantum estimation theory , similar to the Cramer – Rao inequality in classical estimation theory.

Wording

Consider the quantum estimation of the density operatorρ(θ) {\ displaystyle \ rho (\ theta)}   using a probability operator measuredΠ(θ^) {\ displaystyle d \ Pi ({\ hat {\ theta}})}   giving an assessmentθ^ {\ displaystyle {\ hat {\ theta}}}   The posterior density probability distribution of a quantum estimate can be calculated asq(θ^|θ)=q(θ^|θ)dmθ=Tr⁡[ρ(θ)dΠ(θ^)] {\ displaystyle q ({\ hat {\ theta}} | \ theta) = q ({\ hat {\ theta}} | \ theta) d ^ {m} \ theta = \ operatorname {Tr} [\ rho (\ theta) d \ Pi ({\ hat {\ theta}})]}   . The mathematical expectations of quantum estimates are obtained in the formθ¯j=E(θ^j|θ)=∫Θθ^jTr⁡[ρ(θ)dΠ(θ^)] {\ displaystyle {\ bar {\ theta}} _ {j} = E ({\ hat {\ theta}} _ {j} | \ theta) = \ int _ {\ Theta} {\ hat {\ theta}} _ {j} \, \ operatorname {Tr} [\ rho (\ theta) d \ Pi ({\ hat {\ theta}})]}   . HereTr {\ displaystyle \ operatorname {Tr}}   Is the trace of an operator in a Hilbert space. Consider unbiased estimates, that is, estimates for which the identity holds:θ¯j=E(θ^j|θ)=θj {\ displaystyle {\ bar {\ theta}} _ {j} = E ({\ hat {\ theta}} _ {j} | \ theta) = \ theta _ {j}}   . Covariance of unbiased estimatesBij {\ displaystyle B_ {ij}}   are given by:Bij=E[(θ^i-θ¯i)(θ^j-θ¯j)|θ]=∫Θ(θ^i-θ¯i)(θ^j-θ¯j)Tr⁡ρ(θ)dΠ(θ^) {\ displaystyle B_ {ij} = E [({\ hat {\ theta}} _ {i} - {\ bar {\ theta}} _ {i}) ({\ hat {\ theta}} _ {j} - {\ bar {\ theta}} _ {j}) | \ theta] = \ int _ {\ Theta} ({\ hat {\ theta}} _ {i} - {\ bar {\ theta}} _ { i}) ({\ hat {\ theta}} _ {j} - {\ bar {\ theta}} _ {j}) \ operatorname {Tr} \ rho (\ theta) \, d \ Pi ({\ hat {\ theta}})}   . With a quadratic loss function, the average risk isC¯=∑i=onem∑j=onemgijBij=tr⁡GB {\ displaystyle {\ bar {C}} = \ sum _ {i = 1} ^ {m} \ sum _ {j = 1} ^ {m} g_ {ij} B_ {ij} = \ operatorname {tr} GB }   . Heretr {\ displaystyle \ operatorname {tr}}   Is the trace of the matrix [1] .

The first form of quantum Cramer-Rao inequality [2] :

Y~BY⩾Y~A-oneY{\ displaystyle {\ tilde {Y}} BY \ geqslant {\ tilde {Y}} A ^ {- 1} Y}   .

The second form of the Cramer-Rao quantum inequality [2] :

Z~B-oneZ⩾Z~AZ{\ displaystyle {\ tilde {Z}} B ^ {- 1} Z \ geqslant {\ tilde {Z}} AZ}   .

HereAij=Tr⁡(∂ρ∂θiLj) {\ displaystyle A_ {ij} = \ operatorname {Tr} \ left ({\ frac {\ partial \ rho} {\ partial \ theta _ {i}}} L_ {j} \ right)}   ,Lk {\ displaystyle L_ {k}}   determined by the formula∂ρ∂θk=one2(ρLk+Lkρ) {\ displaystyle {\ frac {\ partial \ rho} {\ partial \ theta _ {k}}} = {\ frac {1} {2}} (\ rho L_ {k} + L_ {k} \ rho)}   ,Y,Z {\ displaystyle Y, Z}   we obtain fromRe⁡Tr⁡(∫ΘTθρTLdΠ(θ^))=Y~Z {\ displaystyle \ operatorname {Re} \ operatorname {Tr} \ left (\ int _ {\ Theta} T _ {\ theta} \ rho T_ {L} \, d \ Pi ({\ hat {\ theta}}) \ right) = {\ tilde {Y}} Z}   whereTθ=one∑j=onemyj(θ^j-θj) {\ displaystyle T _ {\ theta} = 1 \ sum _ {j = 1} ^ {m} y_ {j} ({\ hat {\ theta}} _ {j} - \ theta _ {j})}   ,TL=∑k=oneLzkLk {\ displaystyle T_ {L} = \ sum _ {k = 1} ^ {L} z_ {k} L {k}}   .

See also

  • Cramer Inequality - Rao

Notes

  1. ↑ Helstrom, 1979 , p. 295.
  2. ↑ 1 2 Helstrom, 1979 , p. 297.

Literature

  • Helstrom K. Quantum theory of hypothesis testing and evaluation. - M .: Mir, 1979.- 344 p.
Source - https://ru.wikipedia.org/w/index.php?title= Quantum_Kramer's inequality_ — _Rao&oldid = 99650768


More articles:

  • Kokovo
  • Hupka, Steffen
  • Tragedy of the Nations
  • Kegi, Adolf
  • Species of the genus Hyofil
  • With Love, J
  • Preserves
  • Glubchitsky County
  • Xie Tien
  • Vakhrushevo (Leningrad Region)

All articles

Clever Geek | 2019