Consider the quantum estimation of the density operator {\ displaystyle \ rho (\ theta)} using a probability operator measure {\ displaystyle d \ Pi ({\ hat {\ theta}})} giving an assessment {\ displaystyle {\ hat {\ theta}}} The posterior density probability distribution of a quantum estimate can be calculated as {\ displaystyle q ({\ hat {\ theta}} | \ theta) = q ({\ hat {\ theta}} | \ theta) d ^ {m} \ theta = \ operatorname {Tr} [\ rho (\ theta) d \ Pi ({\ hat {\ theta}})]} . The mathematical expectations of quantum estimates are obtained in the form {\ displaystyle {\ bar {\ theta}} _ {j} = E ({\ hat {\ theta}} _ {j} | \ theta) = \ int _ {\ Theta} {\ hat {\ theta}} _ {j} \, \ operatorname {Tr} [\ rho (\ theta) d \ Pi ({\ hat {\ theta}})]} . Here {\ displaystyle \ operatorname {Tr}} Is the trace of an operator in a Hilbert space. Consider unbiased estimates, that is, estimates for which the identity holds: {\ displaystyle {\ bar {\ theta}} _ {j} = E ({\ hat {\ theta}} _ {j} | \ theta) = \ theta _ {j}} . Covariance of unbiased estimates {\ displaystyle B_ {ij}} are given by: {\ displaystyle B_ {ij} = E [({\ hat {\ theta}} _ {i} - {\ bar {\ theta}} _ {i}) ({\ hat {\ theta}} _ {j} - {\ bar {\ theta}} _ {j}) | \ theta] = \ int _ {\ Theta} ({\ hat {\ theta}} _ {i} - {\ bar {\ theta}} _ { i}) ({\ hat {\ theta}} _ {j} - {\ bar {\ theta}} _ {j}) \ operatorname {Tr} \ rho (\ theta) \, d \ Pi ({\ hat {\ theta}})} . With a quadratic loss function, the average risk is {\ displaystyle {\ bar {C}} = \ sum _ {i = 1} ^ {m} \ sum _ {j = 1} ^ {m} g_ {ij} B_ {ij} = \ operatorname {tr} GB } . Here {\ displaystyle \ operatorname {tr}} Is the trace of the matrix [1] .
The first form of quantum Cramer-Rao inequality [2] :
- {\ displaystyle {\ tilde {Y}} BY \ geqslant {\ tilde {Y}} A ^ {- 1} Y} .
The second form of the Cramer-Rao quantum inequality [2] :
- {\ displaystyle {\ tilde {Z}} B ^ {- 1} Z \ geqslant {\ tilde {Z}} AZ} .
Here {\ displaystyle A_ {ij} = \ operatorname {Tr} \ left ({\ frac {\ partial \ rho} {\ partial \ theta _ {i}}} L_ {j} \ right)} , {\ displaystyle L_ {k}} determined by the formula {\ displaystyle {\ frac {\ partial \ rho} {\ partial \ theta _ {k}}} = {\ frac {1} {2}} (\ rho L_ {k} + L_ {k} \ rho)} , {\ displaystyle Y, Z} we obtain from {\ displaystyle \ operatorname {Re} \ operatorname {Tr} \ left (\ int _ {\ Theta} T _ {\ theta} \ rho T_ {L} \, d \ Pi ({\ hat {\ theta}}) \ right) = {\ tilde {Y}} Z} where {\ displaystyle T _ {\ theta} = 1 \ sum _ {j = 1} ^ {m} y_ {j} ({\ hat {\ theta}} _ {j} - \ theta _ {j})} , {\ displaystyle T_ {L} = \ sum _ {k = 1} ^ {L} z_ {k} L {k}} .