Clever Geek Handbook
📜 ⬆️ ⬇️

Ribokur Curve

The Ribocour curve is a flat curve, defined as the locus of the points , the constant ratio of the radius of curvature to the length of the normal segment from the intersection with the curve to the intersection with the x-axis .

The curve was investigated by Albert Ribokur in 1880.

Content

Equations

  • in rectangular coordinates :
x=∫0ydy(yc)2n-one,{\ displaystyle x = \ int \ limits _ {0} ^ {y} {\ frac {\ mathrm {d} y} {\ sqrt {\ left ({\ frac {y} {c}} \ right) ^ { 2n} -1}}},}  
Wheren {\ displaystyle n}   - the ratio of the length of the normal to the radius of curvature.
  • parametric equation:
{x=(m+one)C∫0tsinm+one⁡τdτy=Csinm+one⁡t,{\ displaystyle {\ begin {cases} x = (m + 1) C \ int \ limits _ {0} ^ {t} \ sin ^ {m + 1} \ tau \; \ mathrm {d} \ tau \\ y = C \ sin ^ {m + 1} t, \ end {cases}}}  
Wherem=-(n+one)n,n=oneh,h {\ displaystyle m = - (n + 1) n, \; \; n = {\ frac {1} {h}}, \; \; h}   - whole.

Special Cases

  • Circumference atm=0 {\ displaystyle m = 0}   ,
  • Cycloid withm=one {\ displaystyle m = 1}   ,
  • Chain line atm=2 {\ displaystyle m = 2}   ,
  • Parabola atm=3 {\ displaystyle m = 3}   .
  • Sinusoidal helix

Literature

  • Mathematical encyclopedia (in 5 volumes). - M .: Soviet Encyclopedia , 1982.
  • A. A. Savelov. Flat curves. - M. , 1960.

See also

  • Sinusoidal helix
  • the Rose

Links

  • encyclopediaofmath.org
  • On generalization of Sinusoidal spirals and Ribaucour curves
  • On Curves and Surfaces in Illumination Geometry
Source - https://ru.wikipedia.org/w/index.php?title=Ribokur Curve&oldid = 94712105


More articles:

  • Lesley, Leslie
  • Afrikyan, Evrik Gegamovich
  • Smelovskaya
  • Graucker's Widebeak
  • Kastyuriny
  • FIBA Oceania
  • Kiev Archaeological Culture
  • Melzer, Marilyn
  • Geojema (station)
  • Chamonix, Ulrich

All articles

Clever Geek | 2019