Clever Geek Handbook
📜 ⬆️ ⬇️

Gromov's Betty Number Theorem

Gromov's Betty number theorem gives an upper bound on the sum of the Betti numbers of a compact Riemannian manifold through the lower bound of its sectional curvatures, dimension and diameter.

Comments

  • In particular, the sum of Betti numbers of a compact Riemannian manifold of dimensionn {\ displaystyle n}   with non-negative sectional curvature is bounded by a constantC(n) {\ displaystyle C (n)}   .
    • SupposedlyC(n)=2n {\ displaystyle C (n) = 2 ^ {n}}   i.e. flatn {\ displaystyle n}   -dimensional torus has the maximum sum of Betti numbers among alln {\ displaystyle n}   -dimensional manifolds of non-negative sectional curvature.
    • Explicit estimates are known, for exampleC(n)=ten3nfour+9n3+6n2 {\ displaystyle C (n) = 10 ^ {3n ^ {4} + 9n ^ {3} + 6n ^ {2}}}   .
  • The theorem gives an estimate for the Euler characteristicn {\ displaystyle n}   -dimensional manifold of non-negative sectional curvature.
    • Presumably all such varieties have a non-negative Eulerian characteristic.

Literature

  • Gromov, Michael. Curvature, diameter and Betti numbers. (English) // Comment. Math. Helv. - 1981. - Vol. 56 , no. 2 . - P. 179–195 .
Source - https://ru.wikipedia.org/w/index.php?title=Gromov_ theorem_ on Betty_ numbers&oldid = 94885068


More articles:

  • Ayagan, Burkitbay Gelmanovich
  • Egbert II (King of Bernitz)
  • Korcha (beer)
  • Pokrovo-Chicherinsky Village Council
  • Yablonovetsky Village Council
  • Urban settlement Svetly
  • Option "Omega"
  • Arbynsky Nasleg
  • Iskra litter
  • Aragones, Sergio

All articles

Clever Geek | 2019