Clever Geek Handbook
📜 ⬆️ ⬇️

The principle of uniform boundedness

The principle of uniform boundedness or the Banach – Steinhaus theorem is a fundamental result of functional analysis . The theorem states that pointwise and uniform boundedness are equivalent for families of continuous linear operators defined on a Banach space .

Content

  • 1 History
  • 2 Wording
  • 3 Consequences
  • 4 Variations and generalizations
  • 5 References

History

The theorem was proved by Banach and Steinhaus and independently by Hans Khan .

Wording

Let beX {\ displaystyle X}   Banach spaceY {\ displaystyle Y}   normalized vector space andF {\ displaystyle F}   family of linear continuous operators fromX {\ displaystyle X}   atY {\ displaystyle Y}   . Suppose for anyx∈X {\ displaystyle x \ in X}   performed

supT∈F‖T(x)‖Y<∞,{\ displaystyle \ sup \ nolimits _ {T \ in F} \ | T (x) \ | _ {Y} <\ infty,}  

then

supT∈F,‖x‖=one‖T(x)‖Y=supT∈F‖T‖B(X,Y)<∞.{\ displaystyle \ sup \ nolimits _ {T \ in F, \ | x \ | = 1} \ | T (x) \ | _ {Y} = \ sup \ nolimits _ {T \ in F} \ | T \ | _ {B (X, Y)} <\ infty.}  

Consequences

If a sequence of bounded operators on a Banach space converges pointwise, then its pointwise limit is a bounded operator.

Variations and generalizations

  • Barrel space is the most common type of space in which the principle of uniform boundedness is fulfilled.
  • The boundedness principle holds for mapping families fromX {\ displaystyle X}   atY {\ displaystyle Y}   ifX {\ displaystyle X}   is Baire space andY {\ displaystyle Y}   - locally convex space .

References

  • Banach, Stefan & Steinhaus, Hugo (1927), " Sur le principe de la condensation de singularités ", Fundamenta Mathematicae T. 9: 50–61 , < http://matwbn.icm.edu.pl/ksiazki/fm/fm9 /fm918.pdf >   (fr.)
  • Bourbaki, Nicolas (1987), Topological vector spaces , Elements of mathematics, Springer, ISBN 978-3-540-42338-6  
  • Dieudonné, Jean (1970), Treatise on analysis, Volume 2 , Academic Press   .
  • Rudin, Walter (1966), Real and complex analysis , McGraw-Hill   .
  • Shtern, AI (2001), "Banach – Steinhaus theorem" , in Hazewinkel, Michiel, Encyclopedia of Mathematics , Springer , ISBN 978-1-55608-010-4   .
  • Sokal, Alan (2011), " A really simple elementary proof of the uniform boundedness theorem ", Amer. Math. Monthly T. 118: 450-452 , DOI 10.4169 / amer.math.monthly.118.05.450   .
  • Weinberg M.M. Functional Analysis. - M .: Education, 1979. - 128 p.
Source - https://ru.wikipedia.org/w/index.php?title= Uniform_boundedness principle&oldid = 89001746


More articles:

  • Rosguard
  • Tyomkin, Jacob Solomonovich
  • Ekholm Helena
  • Grel, Edward
  • Greek Cypriot Relations
  • List of the richest businessmen in Russia (2007)
  • 583rd Fighter Aviation Regiment
  • Special Forces (film)
  • Raft (song)
  • Achilles (operation)

All articles

Clever Geek | 2019