Clever Geek Handbook
📜 ⬆️ ⬇️

Hand lemma

Arm-lemma.svg

The arm lemma is a lemma in the proof of the Cauchy polyhedron theorem .

Informally, a statement can be described as follows: Imagine a robot arm consisting of several links connected by joints. Each link is a segment, and the whole arm is broken . Let the entire arm of the robot can move in one plane. Suppose, in the initial state, the robot arm forms a convex broken line, that is, such a broken line, that if we connect the ends of the broken line, we get a convex polygon . Suppose now that the robot increases the angle in each joint. The lemma states that then the distance between the beginning and the end of the arm will increase.

Despite the simplicity of the statement, the proof of the lemma is not simple. In particular, in this place the original proof of Cauchy has an error. This mistake went unnoticed for more than a hundred years. It was noticed by Ernst Steinitz , apparently, between 1920 and 1928 and corrected only in 1934 [1] .

Content

Wording

SupposeAoneA2...An {\ displaystyle A_ {1} A_ {2} \ dots A_ {n}}   convex polygon on the Euclidean plane andBoneB2...Bn {\ displaystyle B_ {1} B_ {2} \ dots B_ {n}}   a broken line in a plane or space such that

  • AiAi+one=BiBi+one{\ displaystyle A_ {i} A_ {i + 1} = B_ {i} B_ {i + 1}}   ati<n {\ displaystyle i <n}   ,
  • ∡Ai-oneAiAi+one≤∡Bi-oneBiBi+one{\ displaystyle \ measuredangle A_ {i-1} A_ {i} A_ {i + 1} \ leq \ measuredangle B_ {i-1} B_ {i} B_ {i + 1}}   atone<i<n {\ displaystyle 1 <i <n}   .

Then

AoneAn≤BoneBn.{\ displaystyle A_ {1} A_ {n} \ leq B_ {1} B_ {n}.}  

Moreover, in case of equality, broken linesAoneA2...An {\ displaystyle A_ {1} A_ {2} \ dots A_ {n}}   andBoneB2...Bn {\ displaystyle B_ {1} B_ {2} \ dots B_ {n}}   congruent.

Variations and generalizations

  • A similar result is true on the sphere and the Lobachevsky plane .
  • Zalgaller 's theorem . If two sphericaln {\ displaystyle n}   -GolnikovA {\ displaystyle A}   andB {\ displaystyle B}   respective sides are equal and polygonA {\ displaystyle A}   lies in the hemisphere, then at least one of the cornersB {\ displaystyle B}   not less than the corresponding angleA {\ displaystyle A}   . [2]
  • Bent bow lemma [3] - version of the arm lemma for smooth curves: Letγ {\ displaystyle \ gamma}   andγ~ {\ displaystyle {\ tilde {\ gamma}}}   - a pair of smooth curves parametrized by the length defined on the same interval[a,b] {\ displaystyle [a, b]}   . Suppose for anyt {\ displaystyle t}   inequality holdsκγ(t)≤κγ~(t) {\ displaystyle \ kappa _ {\ gamma} (t) \ leq \ kappa _ {\ tilde {\ gamma}} (t)}   whereκγ(t) {\ displaystyle \ kappa _ {\ gamma} (t)}   andκγ~(t) {\ displaystyle \ kappa _ {\ tilde {\ gamma}} (t)}   denotes curvatureγ {\ displaystyle \ gamma}   and correspondinglyγ~ {\ displaystyle {\ tilde {\ gamma}}}   att {\ displaystyle t}   . Further suppose thatγ~ {\ displaystyle {\ tilde {\ gamma}}}   there is an arc of a planar convex curve, that is, it passes along the boundary of some convex planar figure. Then the distance between the endsγ {\ displaystyle \ gamma}   does not exceed the distance between the endsγ~ {\ displaystyle {\ tilde {\ gamma}}}   ; i.e,
    |γ(b)-γ(a)|≥|γ~(b)-γ~(a)|.{\ displaystyle | \ gamma (b) - \ gamma (a) | \ geq | {\ tilde {\ gamma}} (b) - {\ tilde {\ gamma}} (a) |.}  
(The lemma is true ifγ {\ displaystyle \ gamma}   there is a curve in Euclidean space of arbitrary dimension.)

See also

  • Lemma Alexandrova

Notes

  1. ↑ Steinitz E., Rademacher H. Vorlesungen ̈uber die Theorie der Polyeder. Berlin: Springer-Verl., 1934.
  2. ↑ V.A. Zalgaller . On deformations of a polygon on a sphere // Uspekhi Mat . - 1956. - T. 11 , No. 5 (71) . - S. 177-178 .
  3. ↑ Toponogov, V. A. Differential geometry of curves and surfaces . - Fizmatkniga, 2012. - ISBN 978-5-89155-213-5 .

Literature

  • I. Kh. Sabitov , Around the proof of the Legendre - Cauchy lemma on convex polygons Sibirsk. mate. Zh., 2004, Volume 45, No. 4, p. 892-919
  • Lecture 24 in Tabachnikov S.L., Fuchs D.B. Mathematical divertissement. - ICMMO, 2011 .-- ISBN 978-5-94057-731-7 .
Source - https://ru.wikipedia.org/w/index.php?title= Lemma_o_ruke&oldid = 100591176


More articles:

  • 707
  • Dahehe
  • Cleary, Gabriel
  • Explosions at Centrs Department Store
  • Las Tablas (Panama)
  • Central-Eastern Friulian Dialects
  • Bauer, Gleb Mikhailovich
  • Krautreporter (online edition)
  • Charlemagne: The Omens of Death
  • City settlement Laishevo

All articles

Clever Geek | 2019