Clever Geek Handbook
📜 ⬆️ ⬇️

Confidence interval for the mathematical expectation of a normal sample

The case of known variance

Let beXone,...,Xn∼N(μ,σ2) {\ displaystyle X_ {1}, \ ldots, X_ {n} \ sim \ mathrm {N} (\ mu, \ sigma ^ {2})}   Is an independent sample from the normal distribution , whereσ2 {\ displaystyle \ sigma ^ {2}}   - known dispersion . Define an arbitraryα∈[0,one] {\ displaystyle \ alpha \ in [0,1]}   and build the confidence interval for the unknown averageμ {\ displaystyle \ mu}   .

Statement. Random value

Z=X¯-μσ/n{\ displaystyle Z = {\ frac {{\ bar {X}} - \ mu} {\ sigma / {\ sqrt {n}}}}}  

has a standard normal distributionN(0,one) {\ displaystyle \ mathrm {N} (0,1)}   . Let bezα {\ displaystyle z _ {\ alpha}}   -α {\ displaystyle \ alpha}   is the quantile of the standard normal distribution . Then, due to the symmetry of the latter, we have:

P(-zone-α2≤Z≤zone-α2)=one-α{\ displaystyle \ mathbb {P} \ left (-z_ {1 - {\ frac {\ alpha} {2}}} \ leq Z \ leq z_ {1 - {\ frac {\ alpha} {2}}} \ right) = 1- \ alpha}   .

After substituting the expression forZ {\ displaystyle Z}   and simple algebraic transformations we get:

P(X¯-zone-α2σn≤μ≤X¯+zone-α2σn)=one-α{\ displaystyle \ mathbb {P} \ left ({\ bar {X}} - z_ {1 - {\ frac {\ alpha} {2}}} {\ frac {\ sigma} {\ sqrt {n}}} \ leq \ mu \ leq {\ bar {X}} + z_ {1 - {\ frac {\ alpha} {2}}} {\ frac {\ sigma} {\ sqrt {n}}} \ right) = 1 - \ alpha}   .

The Case of Unknown Variance

Let beXone,...,Xn∼N(μ,σ2) {\ displaystyle X_ {1}, \ ldots, X_ {n} \ sim \ mathrm {N} (\ mu, \ sigma ^ {2})}   Is an independent sample from the normal distribution, whereμ,σ2 {\ displaystyle \ mu, \ sigma ^ {2}}   - unknown constants. We construct a confidence interval for an unknown averageμ {\ displaystyle \ mu}   .

Statement. Random value

T=X¯-μS/n{\ displaystyle T = {\ frac {{\ bar {X}} - \ mu} {S / {\ sqrt {n}}}}}   ,

has a student distribution withn-one {\ displaystyle n-1}   degrees of freedomt(n-one) {\ displaystyle \ mathrm {t} (n-1)}   whereS {\ displaystyle S}   - unbiased sample standard deviation. Let betα,n-one {\ displaystyle t _ {\ alpha, n-1}}   -α {\ displaystyle \ alpha}   - quantiles of student distribution . Then, due to the symmetry of the latter, we have:

P(-tone-α2,n-one≤T≤tone-α2,n-one)=one-α{\ displaystyle \ mathbb {P} \ left (-t_ {1 - {\ frac {\ alpha} {2}}, n-1} \ leq T \ leq t_ {1 - {\ frac {\ alpha} {2 }}, n-1} \ right) = 1- \ alpha}   .

After substituting the expression forT {\ displaystyle T}   and simple algebraic transformations we get:

P(X¯-tone-α2,n-oneSn≤μ≤X¯+tone-α2,n-oneSn)=one-α{\ displaystyle \ mathbb {P} \ left ({\ bar {X}} - t_ {1 - {\ frac {\ alpha} {2}}, n-1} {\ frac {S} {\ sqrt {n }}} \ leq \ mu \ leq {\ bar {X}} + t_ {1 - {\ frac {\ alpha} {2}}, n-1} {\ frac {S} {\ sqrt {n}} } \ right) = 1- \ alpha}   .


Source - https://ru.wikipedia.org/w/index.php?title=Trust_interval_for_mathematical_ wait_of_normal_selection&oldid = 93434509


More articles:

  • Donkey Konga
  • Clairvoyance
  • 1994 European Sambo Championship
  • Kent, Stacy
  • Selena (fish)
  • Kurochkin, Alexey Viktorovich
  • Crimea 24
  • Biryulinsky rural settlement (Tatarstan)
  • Kasimov, Abdulhair
  • PBZ Zagreb Indoors 2015

All articles

Clever Geek | 2019