Let be {\ displaystyle X_ {1}, \ ldots, X_ {n} \ sim \ mathrm {N} (\ mu, \ sigma ^ {2})} Is an independent sample from the normal distribution , where {\ displaystyle \ sigma ^ {2}} - known dispersion . Define an arbitrary {\ displaystyle \ alpha \ in [0,1]} and build the confidence interval for the unknown average {\ displaystyle \ mu} .
Statement. Random value
- {\ displaystyle Z = {\ frac {{\ bar {X}} - \ mu} {\ sigma / {\ sqrt {n}}}}}
has a standard normal distribution {\ displaystyle \ mathrm {N} (0,1)} . Let be {\ displaystyle z _ {\ alpha}} - {\ displaystyle \ alpha} is the quantile of the standard normal distribution . Then, due to the symmetry of the latter, we have:
- {\ displaystyle \ mathbb {P} \ left (-z_ {1 - {\ frac {\ alpha} {2}}} \ leq Z \ leq z_ {1 - {\ frac {\ alpha} {2}}} \ right) = 1- \ alpha} .
After substituting the expression for {\ displaystyle Z} and simple algebraic transformations we get:
- {\ displaystyle \ mathbb {P} \ left ({\ bar {X}} - z_ {1 - {\ frac {\ alpha} {2}}} {\ frac {\ sigma} {\ sqrt {n}}} \ leq \ mu \ leq {\ bar {X}} + z_ {1 - {\ frac {\ alpha} {2}}} {\ frac {\ sigma} {\ sqrt {n}}} \ right) = 1 - \ alpha} .
Let be {\ displaystyle X_ {1}, \ ldots, X_ {n} \ sim \ mathrm {N} (\ mu, \ sigma ^ {2})} Is an independent sample from the normal distribution, where {\ displaystyle \ mu, \ sigma ^ {2}} - unknown constants. We construct a confidence interval for an unknown average {\ displaystyle \ mu} .
Statement. Random value
- {\ displaystyle T = {\ frac {{\ bar {X}} - \ mu} {S / {\ sqrt {n}}}}} ,
has a student distribution with {\ displaystyle n-1} degrees of freedom {\ displaystyle \ mathrm {t} (n-1)} where {\ displaystyle S} - unbiased sample standard deviation. Let be {\ displaystyle t _ {\ alpha, n-1}} - {\ displaystyle \ alpha} - quantiles of student distribution . Then, due to the symmetry of the latter, we have:
- {\ displaystyle \ mathbb {P} \ left (-t_ {1 - {\ frac {\ alpha} {2}}, n-1} \ leq T \ leq t_ {1 - {\ frac {\ alpha} {2 }}, n-1} \ right) = 1- \ alpha} .
After substituting the expression for {\ displaystyle T} and simple algebraic transformations we get:
- {\ displaystyle \ mathbb {P} \ left ({\ bar {X}} - t_ {1 - {\ frac {\ alpha} {2}}, n-1} {\ frac {S} {\ sqrt {n }}} \ leq \ mu \ leq {\ bar {X}} + t_ {1 - {\ frac {\ alpha} {2}}, n-1} {\ frac {S} {\ sqrt {n}} } \ right) = 1- \ alpha} .