Ruffini's rule is an effective technique for dividing a polynomial by a bin of the form {\ displaystyle xr.}
In 1804, it was described by Paolo Ruffini . [1] The Ruffini rule is a special case of synthetic division , when the divider is linear.
The rule establishes a method for dividing a polynomial
- {\ displaystyle P (x) = a_ {n} x ^ {n} + a_ {n-1} x ^ {n-1} + \ cdots + a_ {1} x + a_ {0}}
on bin
- {\ displaystyle Q (x) = xr}
for private
- {\ displaystyle R (x) = b_ {n-1} x ^ {n-1} + b_ {n-2} x ^ {n-2} + \ cdots + b_ {1} x + b_ {0}} ;
In fact, the algorithm divides the column P ( x ) by Q ( x ).
In order to divide P ( x ) by Q ( x ) according to this algorithm, you need
- Take the coefficients P ( x ) and write them in order. Then write r to the left, directly above the line:
- {\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r &&&&& \\\ hline &&&&&&\ {array}}}
- Move the leftmost coefficient ( a n ) down, just below the line:
- {\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r &&&&& \\\ hline & a_ {n} &&&& \\ & = b_ {n-1} &&&& \\\ end {array}}}
- Multiply the rightmost number under the line by r and write as follows above the line:
- {\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r && b_ {n-1} r &&& \\\ hline & a_ { n} &&&& \\ & = b_ {n-1} &&&& \\\ end {array}}}
- Add two values located in one column:
- {\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r && b_ {n-1} r &&& \\\ hline & a_ { n} & a_ {n-1} + (b_ {n-1} r) &&& \\ & = b_ {n-1} & = b_ {n-2} &&& \\\ end {array}}}
- Repeat steps 3 and 4 until there are numbers:
- {\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r && b_ {n-1} r &&& \\\ hline & a_ { n} & a_ {n-1} + (b_ {n-1} r) & \ cdots & a_ {1} + b_ {1} r & a_ {0} + b_ {0} r \\ & = b_ {n-1} & = b_ {n-2} & \ cdots & = b_ {0} & = s \\\ end {array}}}
The numbers b i are the coefficients of the quotient ( R ( x )), whose degree is one less than the degree of P (x). The last s value obtained is the remainder . According to Bezout's theorem , this remainder is equal to P ( r ).
Division by polynomial x - r
A working example of division of polynomials according to the algorithm described above.
Let be:
- {\ displaystyle P (x) = 2x ^ {3} + 3x ^ {2} -4,}
- {\ displaystyle Q (x) = x + 1.}
We want to find {\ displaystyle P (x) / Q (x)} using the Ruffini rule. The main problem is that {\ displaystyle Q (x)} this is not a bin of the form {\ displaystyle xr,} but rather {\ displaystyle x + r.} We must rewrite it like this:
- {\ displaystyle Q (x) = x + 1 = x - (- 1).}
Now apply the algorithm:
1. We write out the coefficients and the number {\ displaystyle r.} Note that since {\ displaystyle P (x)} no coefficient {\ displaystyle x ^ {1},} we write 0:
- {\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 &&&& \\\ hline &&&& \\ &&&& \\\ end {array}}}
2. We lower the first coefficient:
- {\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 &&&& \\\ hline & 2 &&& \\\ end {array}}}
3. Multiply the last obtained value {\ displaystyle r:}
- {\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 && - 2 && \\\ hline & 2 &&& \\\ end {array}}}
4. Add up the values:
- {\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 && - 2 && \\\ hline & 2 & 1 && \\\ end {array}}}
5. Repeat steps 3 and 4:
- {\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 && - 2 & -1 & 1 \\\ hline & 2 & 1 & -1 & -3 \\\ end {array}}}
- {\ displaystyle 2.1, -1} - the coefficients of the private,
- {\ displaystyle -3} - the remainder.
So, since the original number = divisor × quotient + remainder , then
- {\ displaystyle P (x) = Q (x) R (x) + s} where
- {\ displaystyle R (x) = 2x ^ {2} + x-1, \ s = -3; \ quad \ Rightarrow 2x ^ {3} + 3x ^ {2} -4 = (2x ^ {2} + x -1) (x + 1) -3.}