Clever Geek Handbook
📜 ⬆️ ⬇️

Ruffini Rule

Ruffini's rule is an effective technique for dividing a polynomial by a bin of the formx-r. {\ displaystyle xr.} {\ displaystyle x-r.} In 1804, it was described by Paolo Ruffini . [1] The Ruffini rule is a special case of synthetic division , when the divider is linear.

Content

  • 1 Algorithm
  • 2 Use
    • 2.1 Division by the polynomial x - r
  • 3 References
  • 4 notes

Algorithm

The rule establishes a method for dividing a polynomial

P(x)=anxn+an-onexn-one+⋯+aonex+a0{\ displaystyle P (x) = a_ {n} x ^ {n} + a_ {n-1} x ^ {n-1} + \ cdots + a_ {1} x + a_ {0}}  

on bin

Q(x)=x-r{\ displaystyle Q (x) = xr}  

for private

R(x)=bn-onexn-one+bn-2xn-2+⋯+bonex+b0{\ displaystyle R (x) = b_ {n-1} x ^ {n-1} + b_ {n-2} x ^ {n-2} + \ cdots + b_ {1} x + b_ {0}}   ;

In fact, the algorithm divides the column P ( x ) by Q ( x ).

In order to divide P ( x ) by Q ( x ) according to this algorithm, you need

  1. Take the coefficients P ( x ) and write them in order. Then write r to the left, directly above the line:
    anan-one...aonea0r{\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r &&&&& \\\ hline &&&&&&\ {array}}}  
  2. Move the leftmost coefficient ( a n ) down, just below the line:
    anan-one...aonea0ran=bn-one{\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r &&&&& \\\ hline & a_ {n} &&&& \\ & = b_ {n-1} &&&& \\\ end {array}}}  
  3. Multiply the rightmost number under the line by r and write as follows above the line:
    anan-one...aonea0rbn-oneran=bn-one{\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r && b_ {n-1} r &&& \\\ hline & a_ { n} &&&& \\ & = b_ {n-1} &&&& \\\ end {array}}}  
  4. Add two values ​​located in one column:
    anan-one...aonea0rbn-oneranan-one+(bn-oner)=bn-one=bn-2{\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r && b_ {n-1} r &&& \\\ hline & a_ { n} & a_ {n-1} + (b_ {n-1} r) &&& \\ & = b_ {n-1} & = b_ {n-2} &&& \\\ end {array}}}  
  5. Repeat steps 3 and 4 until there are numbers:
    anan-one...aonea0rbn-oneranan-one+(bn-oner)⋯aone+bonera0+b0r=bn-one=bn-2⋯=b0=s{\ displaystyle {\ begin {array} {c | ccccc} & a_ {n} & a_ {n-1} & \ dots & a_ {1} & a_ {0} \\ r && b_ {n-1} r &&& \\\ hline & a_ { n} & a_ {n-1} + (b_ {n-1} r) & \ cdots & a_ {1} + b_ {1} r & a_ {0} + b_ {0} r \\ & = b_ {n-1} & = b_ {n-2} & \ cdots & = b_ {0} & = s \\\ end {array}}}  

The numbers b i are the coefficients of the quotient ( R ( x )), whose degree is one less than the degree of P (x). The last s value obtained is the remainder . According to Bezout's theorem , this remainder is equal to P ( r ).

Usage

Division by polynomial x - r

A working example of division of polynomials according to the algorithm described above.

Let be:

P(x)=2x3+3x2-four,{\ displaystyle P (x) = 2x ^ {3} + 3x ^ {2} -4,}  
Q(x)=x+one.{\ displaystyle Q (x) = x + 1.}  

We want to findP(x)/Q(x) {\ displaystyle P (x) / Q (x)}   using the Ruffini rule. The main problem is thatQ(x) {\ displaystyle Q (x)}   this is not a bin of the formx-r, {\ displaystyle xr,}   but ratherx+r. {\ displaystyle x + r.}   We must rewrite it like this:

Q(x)=x+one=x-(-one).{\ displaystyle Q (x) = x + 1 = x - (- 1).}  

Now apply the algorithm:

1. We write out the coefficients and the numberr. {\ displaystyle r.}   Note that sinceP(x) {\ displaystyle P (x)}   no coefficientxone, {\ displaystyle x ^ {1},}   we write 0:

230-four-one{\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 &&&& \\\ hline &&&& \\ &&&& \\\ end {array}}}  

2. We lower the first coefficient:

230-four-one2{\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 &&&& \\\ hline & 2 &&& \\\ end {array}}}  

3. Multiply the last obtained valuer: {\ displaystyle r:}  

230-four-one-22{\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 && - 2 && \\\ hline & 2 &&& \\\ end {array}}}  

4. Add up the values:

230-four-one-22one{\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 && - 2 && \\\ hline & 2 & 1 && \\\ end {array}}}  

5. Repeat steps 3 and 4:

230-four-one-2-oneone2one-one-3{\ displaystyle {\ begin {array} {c | cccc} & 2 & 3 & 0 & -4 \\ - 1 && - 2 & -1 & 1 \\\ hline & 2 & 1 & -1 & -3 \\\ end {array}}}  
2,one,-one{\ displaystyle 2.1, -1}   - the coefficients of the private,
-3{\ displaystyle -3}   - the remainder.

So, since the original number = divisor × quotient + remainder , then

P(x)=Q(x)R(x)+s{\ displaystyle P (x) = Q (x) R (x) + s}   where
R(x)=2x2+x-one,s=-3;⇒2x3+3x2-four=(2x2+x-one)(x+one)-3.{\ displaystyle R (x) = 2x ^ {2} + x-1, \ s = -3; \ quad \ Rightarrow 2x ^ {3} + 3x ^ {2} -4 = (2x ^ {2} + x -1) (x + 1) -3.}  

Links

  • Weisstein, Eric W. Ruffini Rule at Wolfram MathWorld .

Notes

  1. ↑ Cajory, Florian . Horner's method of approximation anticipated by Ruffini // Bulletin of the American Mathematical Society : journal. - 1911. - Vol. 17 , no. 8 . - P. 389-444 .
Source - https://ru.wikipedia.org/w/index.php?title=Ruffini_Rule&oldid=101064761


More articles:

  • Microrobot
  • Oedipus the King (Stravinsky Opera)
  • Karl Christian (Prince of Nassau-Weilburg)
  • Socket FS1
  • Arla Foods
  • King of the Past and the Future (Twilight Zone)
  • Trimeresurus popeiorum
  • Bears Neighbors
  • Xiangjiaomin Bridge
  • Battle of Samavu (2003)

All articles

Clever Geek | 2019