Clever Geek Handbook
📜 ⬆️ ⬇️

Minkowski capacity

Minkowski capacity is a basic concept in geometric measure theory , generalizing to arbitrary measurable sets the concepts of the length of a curve on a plane and the surface area in space .

Capacity is usually used for fractal boundaries of regions in Euclidean space , but it makes sense in the context of general metric spaces with measure.

Named after German Minkowski .

Content

Definition

Let be(X,μ,d) {\ displaystyle (X, \ mu, d)}   metric space with measure whered {\ displaystyle d}   is a metric onX {\ displaystyle X}   , butμ {\ displaystyle \ mu}   Is a Borel measure . For a subsetA {\ displaystyle A}   atX {\ displaystyle X}   and real ε> 0, we denote

Aε={x∈X|d(x,A)<ε}{\ displaystyle A _ {\ varepsilon} = \ {x \ in X \, | \, d (x, A) <\ varepsilon \}}  

its closedε {\ displaystyle \ varepsilon}   neighborhood. Lower capacity of Minkowski codimensionk {\ displaystyle k}   defined as lower limit

M∗(A)=lim infε→0μ(Aε)-μ(A)εk,{\ displaystyle M _ {*} (A) = \ liminf _ {\ varepsilon \ to 0} {\ frac {\ mu (A _ {\ varepsilon}) - \ mu (A)} {\ varepsilon ^ {k}}} ,}  

and upper capacity of Minkowski codimensionk {\ displaystyle k}   as the upper limit

M∗(A)=lim supε→0μ(Aε)-μ(A)εk.{\ displaystyle M ^ {*} (A) = \ limsup _ {\ varepsilon \ to 0} {\ frac {\ mu (A _ {\ varepsilon}) - \ mu (A)} {\ varepsilon ^ {k}} }.}  

If aM∗(A)=M∗(A) {\ displaystyle M ^ {*} (A) = M _ {*} (A)}   , then their general value is called the Minkowski capacity of codimensionk {\ displaystyle k}   A in measure μ, and is denoted byM(A) {\ displaystyle M (A)}   .

Properties

  • If aA {\ displaystyle A}   there is a closedn {\ displaystyle n}   - rectifiable set inRn+k {\ displaystyle \ mathbb {R} ^ {n + k}}   , then the Minkowski capacityA {\ displaystyle A}   in relation to volume onRn+k {\ displaystyle \ mathbb {R} ^ {n + k}}   exists and coincides with hisn {\ displaystyle n}   -Hausdorff measure up to normalization.

See also

  • Minkowski dimension

Links

  • Federer, Herbert , Geometric measure theory   .
Source - https://ru.wikipedia.org/w/index.php?title=Minkowski_Capacity&oldid=77322033


More articles:

  • Djerba, Ali
  • Alexander Yaroslavich (Prince of Ryazan)
  • Private Theorem
  • Palace "Gulistan"
  • United States Standard Stamps (1922–1931)
  • Sumatran Porcupine
  • (705) Herminia
  • Goba, Samuel
  • Stepanov Brothers House (Chelyabinsk)
  • Electron Transfer Flavoprotein

All articles

Clever Geek | 2019