Clever Geek Handbook
📜 ⬆️ ⬇️

Private theorem

The private theorem is the statement that if the result of multiplying a vector by an amount with an arbitrary number of upper and lower indices is a tensor for any vector, then the value with upper and lower indices is a tensor.

Content

Formulation

Let the valuePλμν {\ displaystyle P _ {\ lambda \ mu \ nu}}   is such that for any vectorAν {\ displaystyle A ^ {\ nu}}   magnitudeAλPλμν {\ displaystyle A ^ {\ lambda} P _ {\ lambda \ mu \ nu}}   is a tensor. In this case, the valuePλμν {\ displaystyle P _ {\ lambda \ mu \ nu}}   is a tensor.

Proof

Consider the transformation from the old curvilinear coordinate system, where the vector has coordinatesxμ {\ displaystyle x ^ {\ mu}}   to a new coordinate system, where the same vector has coordinatesxμ′ {\ displaystyle x ^ {\ mu '}}   . We agree to designate∂xμ′∂xν=x,νμ′ {\ displaystyle {\ frac {\ partial x ^ {\ mu '}} {\ partial x ^ {\ nu}}} = x _ {, \ nu} ^ {\ mu'}}   . Denote the valueQμν=AλPλμν {\ displaystyle Q _ {\ mu \ nu} = A ^ {\ lambda} P _ {\ lambda \ mu \ nu}}   . By condition,Qμν {\ displaystyle Q _ {\ mu \ nu}}   there is a tensor, thereforeQβγ=Qμ′ν′x,βμ′x,γν′ {\ displaystyle Q _ {\ beta \ gamma} = Q _ {\ mu '\ nu'} x _ {, \ beta} ^ {\ mu '} x _ {, \ gamma} ^ {\ nu'}}   . ThenAαPαβγ=Aλ′Pλ′μ′γ′x,βμ′x,γν′ {\ displaystyle A ^ {\ alpha} P _ {\ alpha \ beta \ gamma} = A ^ {\ lambda '} P _ {\ lambda' \ mu '\ gamma'} x _ {, \ beta} ^ {\ mu '} x _ {, \ gamma} ^ {\ nu '}}   . BecauseAλ {\ displaystyle A ^ {\ lambda}}   is a vector, according to the rules of vector transformation we have:Aλ′=Aαx,αλ′ {\ displaystyle A ^ {\ lambda '} = A ^ {\ alpha} x _ {, \ alpha} ^ {\ lambda'}}   . In this way:AαPαβγ=Aαx,αλ′Pλ′μ′ν′x,βμ′x,γν′ {\ displaystyle A ^ {\ alpha} P _ {\ alpha \ beta \ gamma} = A ^ {\ alpha} x _ {, \ alpha} ^ {\ lambda '} P _ {\ lambda' \ mu '\ nu'} x_ {, \ beta} ^ {\ mu '} x _ {, \ gamma} ^ {\ nu'}}   This equality must be true for all.Aα {\ displaystyle A ^ {\ alpha}}   , ConsequentlyPαβγ=Pλ′μ′ν′x,αλ′x,βμ′x,γν′ {\ displaystyle P _ {\ alpha \ beta \ gamma} = P _ {\ lambda '\ mu' \ nu '} x _ {, \ alpha} ^ {\ lambda'} x _ {, \ beta} ^ {\ mu '} x_ {, \ gamma} ^ {\ nu '}}   . MagnitudePαβγ {\ displaystyle P _ {\ alpha \ beta \ gamma}}   is a tensor. The proof can be easily generalized to any number of superscripts and superscripts [1] .

Notes

  1. ↑ Dirac, 1978 , p. 14.

Literature

  • Dirac P.A.M. General theory of relativity. - M .: Atomizdat, 1978. - 64 p.


Source - https://ru.wikipedia.org/w/index.php?title=Teorema_o_particle&oldid=100942361


More articles:

  • Network Security
  • Bustamante, Antonio
  • Pollard, Charles Louis
  • Mark of Assumption for Communion
  • Alexander Yaroslavich (Prince of Ryazan)
  • Palace "Gulistan"
  • United States Standard Stamps (1922–1931)
  • Sumatran Porcupine
  • Goba, Samuel
  • BRIT Awards 2015

All articles

Clever Geek | 2019