The private theorem is the statement that if the result of multiplying a vector by an amount with an arbitrary number of upper and lower indices is a tensor for any vector, then the value with upper and lower indices is a tensor.
Content
Let the value {\ displaystyle P _ {\ lambda \ mu \ nu}} is such that for any vector {\ displaystyle A ^ {\ nu}} magnitude {\ displaystyle A ^ {\ lambda} P _ {\ lambda \ mu \ nu}} is a tensor. In this case, the value {\ displaystyle P _ {\ lambda \ mu \ nu}} is a tensor.
Consider the transformation from the old curvilinear coordinate system, where the vector has coordinates {\ displaystyle x ^ {\ mu}} to a new coordinate system, where the same vector has coordinates {\ displaystyle x ^ {\ mu '}} . We agree to designate {\ displaystyle {\ frac {\ partial x ^ {\ mu '}} {\ partial x ^ {\ nu}}} = x _ {, \ nu} ^ {\ mu'}} . Denote the value {\ displaystyle Q _ {\ mu \ nu} = A ^ {\ lambda} P _ {\ lambda \ mu \ nu}} . By condition, {\ displaystyle Q _ {\ mu \ nu}} there is a tensor, therefore {\ displaystyle Q _ {\ beta \ gamma} = Q _ {\ mu '\ nu'} x _ {, \ beta} ^ {\ mu '} x _ {, \ gamma} ^ {\ nu'}} . Then {\ displaystyle A ^ {\ alpha} P _ {\ alpha \ beta \ gamma} = A ^ {\ lambda '} P _ {\ lambda' \ mu '\ gamma'} x _ {, \ beta} ^ {\ mu '} x _ {, \ gamma} ^ {\ nu '}} . Because {\ displaystyle A ^ {\ lambda}} is a vector, according to the rules of vector transformation we have: {\ displaystyle A ^ {\ lambda '} = A ^ {\ alpha} x _ {, \ alpha} ^ {\ lambda'}} . In this way: {\ displaystyle A ^ {\ alpha} P _ {\ alpha \ beta \ gamma} = A ^ {\ alpha} x _ {, \ alpha} ^ {\ lambda '} P _ {\ lambda' \ mu '\ nu'} x_ {, \ beta} ^ {\ mu '} x _ {, \ gamma} ^ {\ nu'}} This equality must be true for all. {\ displaystyle A ^ {\ alpha}} , Consequently {\ displaystyle P _ {\ alpha \ beta \ gamma} = P _ {\ lambda '\ mu' \ nu '} x _ {, \ alpha} ^ {\ lambda'} x _ {, \ beta} ^ {\ mu '} x_ {, \ gamma} ^ {\ nu '}} . Magnitude {\ displaystyle P _ {\ alpha \ beta \ gamma}} is a tensor. The proof can be easily generalized to any number of superscripts and superscripts [1] .