Clever Geek Handbook
📜 ⬆️ ⬇️

Bishop-Gromov Inequality

The Bishop-Gromov inequality is a comparison theorem in Riemannian geometry . It is a key statement in the proof of Gromov's compactness theorem [1] .

Inequality is named after Richard Bishop and Mikhail Gromov .

Content

Wording

Let beM {\ displaystyle M}   Is a complete n- dimensional Riemannian manifold with Ricci curvature bounded below

Ric⩾(n-one)K{\ displaystyle \ mathrm {Ric} \ geqslant (n-1) K}  

for constantK∈R {\ displaystyle K \ in \ mathbb {R}}   .

Denote byB(p,r)M {\ displaystyle B (p, r) _ {M}}   a ball of radius r around a point p defined with respect to the Riemannian distance function .

Let beMn(K) {\ displaystyle \ mathbb {M} ^ {n} (K)}   denotes an n- dimensional model space. I.eMn(K) {\ displaystyle \ mathbb {M} ^ {n} (K)}   - the full n- dimensional simply connected space of constant sectional curvatureK {\ displaystyle K}   . In this way,

  • Mn(K){\ displaystyle \ mathbb {M} ^ {n} (K)}   is an n- sphere of radiusone/K {\ displaystyle 1 / {\ sqrt {K}}}   , if aK>0 {\ displaystyle K> 0}   , or
  • n- dimensional Euclidean space ifK=0 {\ displaystyle K = 0}   , or
  • Lobachevsky space with curvatureK<0 {\ displaystyle K <0}   .

Then for anyp∈M {\ displaystyle p \ in M}   andp~∈Mn(K) {\ displaystyle {\ tilde {p}} \ in \ mathbb {M} ^ {n} (K)}   function

ϕ(r)=Vol⁡B(p,r)MVol⁡B(p~,r)Mn(K){\ displaystyle \ phi (r) = {\ frac {\ operatorname {Vol} B (p, r) _ {M}} {\ operatorname {Vol} B ({\ tilde {p}}, r) _ {\ mathbb {M} ^ {n} (K)}}}}  

does not increase in the interval(0,∞) {\ displaystyle (0, \ infty)}   .

Remarks

  • AtK=0 {\ displaystyle K = 0}   inequality can be written as follows
    Vol⁡B(p,λ⋅r)M⩽λn⋅Vol⁡B(p,r)M{\ displaystyle \ operatorname {Vol} B (p, \ lambda \ cdot r) _ {M} \ leqslant \ lambda ^ {n} \ cdot \ operatorname {Vol} B (p, r) _ {M}}  
atλ⩾one {\ displaystyle \ lambda \ geqslant 1}   .
  • If r tends to zero, then the ratio approaches unity, so together with monotonicity, this means that
    Vol⁡B(p,r)M⩽Vol⁡B(p~,r)Mn(K).{\ displaystyle \ operatorname {Vol} B (p, r) _ {M} \ leqslant \ operatorname {Vol} B ({\ tilde {p}}, r) _ {\ mathbb {M} ^ {n} (K )}.}  
This version was first proved by Bishop [2] [3] .

See also

  • Myers Theorem

Notes

  1. ↑ Burago Yu. D. , Zalgaller V.A. , Introduction to Riemannian geometry 1991, p. 320, (22.5)
  2. ↑ Bishop, R. A relation between volume, mean curvature, and diameter. Amer. Math. Soc. Not. 10 (1963), p. 364.
  3. ↑ Bishop RL, Crittenden RJ Geometry of manifolds, Corollary 4, p. 256
Source - https://ru.wikipedia.org/w/index.php?title=Bishop's inequality_ — _Gromova&oldid = 79195690


More articles:

  • Ander, Alfred
  • Bartlett, William Henry
  • Savinki (Moscow Oblast)
  • Kara-Haak Sumon
  • India at the 2016 Summer Olympics
  • Mukhamedzhan, Anatoly Borisovich
  • Chatty Dead
  • Barbary (bread)
  • Taekwondo at the 2016 Summer Olympics - qualification
  • Vila y Mateu, Francisco Javier

All articles

Clever Geek | 2019