Solar energy - energy from the Sun in the form of radiation and light. This energy largely controls the climate and weather, and is the basis of life. The technology that controls solar energy is called solar energy .
Solar Energy and Earth
174 PW of solar radiation ( insolation ) is constantly entering the upper layers of the Earth’s atmosphere [1] . About 6% of insolation is reflected from the atmosphere , 16% is absorbed by it. The middle layers of the atmosphere, depending on weather conditions (clouds, dust, atmospheric pollution) reflect up to 20% of insolation and absorb 3%.
The atmosphere not only reduces the amount of solar energy reaching the Earth’s surface, but also diffuses about 20% of what is coming in and filters out part of its spectrum. After passing through the atmosphere, about half of the insolation is in the visible part of the spectrum . The second half is mainly in the infrared part of the spectrum. Only an insignificant part of this insolation is accounted for by ultraviolet radiation [2] [3] .
Solar radiation is absorbed by the surface of the land, oceans (covering about 71% of the surface of the globe) and the atmosphere. The absorption of solar energy through atmospheric convection , evaporation and condensation of water vapor is the driving force of the water cycle and controls the winds. Sun rays absorbed by the ocean and land maintains the average temperature on the Earth's surface, which is now 14 ° C [4] . Thanks to plant photosynthesis , solar energy can be converted into chemical energy, which is stored in the form of food, wood and biomass, which ultimately turns into fossil fuels [5] .
Prospects for use
Solar energy is a source of wind, water, sea heat, biomass, and the cause of the formation of peat, brown and hard coal, oil and natural gas for millennia, but this is indirect energy and accumulated over thousands and millions of years. The energy of the Sun can be used directly as a source of electricity and heat. To do this, create devices that concentrate the energy of the Sun in small areas and in small volumes.
The total amount of solar energy absorbed by the atmosphere, the surface of the land and the ocean is approximately 3,850,000 exajoules (EJ) per year [6] . In one hour, it gives more energy than the whole world used in the whole of 2002 [7] [8] . Photosynthesis takes about 3,000 EJ per year for biomass production [9] . The amount of solar energy that reaches the earth’s surface is so large that in a year it will approximately double the total energy that could potentially be generated from all non-renewable sources: coal, oil, uranium ores [10] .
| "'The annual receipt of solar radiation and energy consumption by man"' 1 | ||
|---|---|---|
| The sun | 3 850 000 | [6] |
| wind | 2,250 | [eleven] |
| Biomass potential | ~ 200 | [12] |
| World energy consumption 2 | 539 | [13] |
| Electricity 2 | ~ 67 | [14] |
| 1 Energy supplied in exajoules 1 EJ = 10 18 J = 278 TW / h 2 Consumption as of 2010 | ||
The amount of solar energy that a person can potentially use is different from the amount of energy that is near the earth's surface. Factors such as the change of day and night, cloudiness and the accessible land surface reduce the amount of energy suitable for use.
The geographical position affects the energy potential, since closer to the equator, the regions receive more solar radiation. However, the use of photovoltaic devices, which can change their orientation in accordance with the position of the Sun in the sky, can significantly increase the potential of solar energy in areas remote from the equator. [15]
Accessibility of land significantly affects possible energy production, since solar panels can only be installed on lands that are suitable for this and are not used for other purposes. For example, a suitable place for installing steel roof panels [15] .
Solar systems are divided into active and passive, depending on the method of absorbing solar energy, its processing and distribution.
Active solar technology uses photovoltaics, concentrated solar energy , solar collectors , pumps and fans to turn solar radiation into a useful energy output. Among passive solar technologies: the use of materials with favorable thermal characteristics, the design of rooms with natural air circulation and the favorable location of buildings relative to the position of the Sun. Active solar technologies increase energy supply, while passive technologies reduce the need for additional energy sources [16] .
In 2000, the United Nations Development Program , the United Nations Department of Economic and Social Affairs and the World Energy Council published an assessment of the potential of solar energy that humanity can produce, taking into account factors such as insolation, cloud cover and available land surface. The assessment showed that the global potential of solar energy is 1.575–49.837 EJ per year "(see table below)" [15] .
| Region | North America | Latin America and the Caribbean | Western Europe | Central and Eastern Europe | Former Soviet Union Countries | Middle East and North Africa | Sub-Saharan Africa | Pacific asia | South asia | Centrally planned Asia | Pacific OECD |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Minimum | 181.1 | 112.6 | 25.1 | 4,5 | 199.3 | 412.4 | 371.9 | 41.0 | 38.8 | 115.5 | 72.6 |
| Maximum | 7 410 | 3 385 | 914 | 154 | 8 655 | 11 060 | 9 528 | 994 | 1,339 | 4 135 | 2,263 |
At this time, heating devices are operating that accumulate the energy of the Sun, as well as prototypes of electric motors and cars that use the energy of the Sun.
Solar energy is believed to be no more than 1% of the total energy used by the end of the century. Back in 1870, a solar water desalination plant was built in Chile, which produced up to 30 tons of fresh water per day and worked for more than 40 years. Thanks to the use of heterojunctions, the efficiency of solar cells already reaches 25%. The production of solar panels in the form of a long polycrystalline silicon tape, which have an efficiency of more than 10%, has been established.
Thermal energy
Technologies that use the thermal energy of the sun can be used to heat water, heat rooms, cool rooms and generate process heat [17] .
In 1897, Frank Schumann , an American inventor, engineer and pioneer in the use of solar energy, built a small demonstration solar engine, the principle of which was that sunlight was reflected on square containers filled with ether, the boiling point of which was lower than water. Inside, black pipes were fitted to the containers, which propelled the steam engine. In 1908, Schumann founded the Sun Power Company, which was to build large solar-powered plants. Together with his technical adviser A.S. Ackerman and British physicist Charles Vernon Boys [18], Schumann developed an improved system using a system of mirrors that reflected sunlight on the boxes of solar collectors , increasing the heating efficiency to a level where it was possible to use instead of ether water. Schumann then built a full-scale steam engine that worked on water at low pressure. This gave him the opportunity in 1912 to patent a whole system with a solar engine.
Between 1912 and 1913, Schumann built the world's first geothermal power station in the city of Maadi, Egypt . The Schuman Power Plant used a parabolic cylinder concentrator to propel a 45–52 kW engine that pumped over 22,000 liters of water per minute from the Nile River to nearby cotton fields. Although the First World War , as well as the discovery of cheap oil in the 1930s, prevented the further advancement of solar energy, the Schumann vision and basic design was revived in the 1970s on a new wave of interest in geothermal energy [19] . In 1916, the press often quoted Schumann's words in which he advocated the use of solar energy:
| We have proved that the use of solar energy can be commercially viable in the tropics, and even more than that, we have proved that after running out of oil and coal, humanity will receive an inexhaustible source of energy in the form of sunlight. Original text We have proved the commercial profit of sun power in the tropics and have more particularly proved that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the sun. 40 Frank schumann New York Times, July 2, 1916 [20] |
Water heating
In low geographical latitudes (below 40 degrees) from 60 to 70% of all domestic hot water with a temperature of up to 60 ° C can provide solar systems for heating water [21] . The most common types of solar water heaters are: vacuum pipe collectors (44%) and flat collectors (34%), which are usually used to heat domestic hot water; as well as transparent plastic collectors (21%), which are mainly used to heat swimming pools [22] .
As of 2007, the total installed capacity of solar systems for heating water was approximately 154 thermal GW. [23] China is a world leader in this field, having installed 70 GW of thermal in 2006 and planning to reach 210 GW of thermal by 2020 [24] . Israel and Cyprus are world leaders in using solar systems to heat water per capita with 90% of the households that installed them [25] . In the USA, Canada and Australia, solar water heaters are used primarily for heating swimming pools, with an installed capacity of about 18 GW thermal in 2005 [16] .
Heating, Cooling, and Ventilation
In the USA, HVAC accounts for 30% (4.65 EJ / yr) of energy used in commercial buildings and almost 50% (10.1 EJ / yr) of energy used in residential buildings [26] [27] . Solar heating, cooling and ventilation systems can be used to compensate for some of this energy.
Thermal mass is any material that can be used to retain heat, in particular solar. Among the materials that can perform the function of thermal mass are stone, cement and water. Throughout history, they have been used in arid or warm climates to keep the room cool, as they absorb solar energy throughout the day and release stored heat at night. However, they can also be used in cooler regions to keep warm. The size and location of the heat mass depends on several factors, such as climate, the ratio of the time of sunlight and stay in the shade. If the thermal mass is correctly placed, then it keeps the room temperature in a comfortable range and reduces the need for devices for additional heating and cooling [28] .
A solar chimney (Or a thermal chimney, in this context) is a passive solar ventilation system consisting of a vertical shaft that connects the inside and outside of a building. If the chimney is heated, then the air inside also heats up, causing a vertical draft that draws air through the house. Its performance can be improved by using opaque materials and thermal mass [29] in a way that resembles a greenhouse.
Deciduous plants are proposed as a way to control solar heating and cooling. If they grow on the southern side of the building in the northern hemisphere or the northern side of the building in the southern hemisphere, then their leaves provide shade during the summer, while bare trunks without obstacles let in sunlight in winter [30] .
Cooking
Solar ovens use sunlight for cooking, drying and pasteurization . They can be divided into three broad categories: box ovens ( English box cookers ), panel ovens ( English panel cookers ) and reflective ovens ( English reflector cookers ) [31] . The simplest solar furnace is a box part, which was first built by Horace Benedict de Saussure in 1767 [32] . A simple oven box consists of an insulated container with a transparent lid. It can be effectively used in the sky partially covered by clouds and usually reaches a temperature of 90-150 ° C [33] . A panel oven uses a reflective panel to direct sunlight into an insulated container and achieve a temperature comparable to a box-type furnace. Reflective furnaces use different reflector geometries (plate, trough, Fresnel mirrors ) to focus the rays on the container. These furnaces reach a temperature of 315 ° C, but require a direct beam and must be rearranged with a change in the position of the Sun [34] .
Process Heat
Solar energy concentration systems such as parabolic plates, troughs and Scheffler reflectors can provide process heat for commercial and industrial needs. The first commercial system was the Total Solar Energy Project STEP) in Shenandoah, Georgia, USA, where a field of 114 parabolic plates provided 50% of the process heat, air ventilation, and electricity needs for the garment factory. This cogeneration unit connected to the network provided 400 kW of electric power as well as thermal energy in the form of 401 W of steam and 468 kW of chilled water and provided heat storage with a one-day peak load [35] . Evaporation ponds are shallow pools that concentrate solids dissolved in water through evaporation . The use of evaporation ponds to extract salt from seawater is one of the oldest uses of solar energy. Among modern applications: increasing the concentration of salts during metal mining by leaching, as well as the removal of solids from wastewater [36] . When using cords , dryers and hangers, the clothes dry out during evaporation under the influence of wind and sunlight without the consumption of electricity and gas. Some state laws even specifically preserve the “right to dry” clothes [37] . Unglazed transpired collectors (UTC) are perforated sun-facing walls used for ventilation air preheating. UTCs can raise the incoming air temperature up to 22 ° C (40 ° F) and deliver outlet temperatures of Template: Convert / Dual / LoffAoffDbSoffT . [38] A short period of return on invested money (from 3 to 12 years) makes transpired collectors financially more profitable than glazed collection systems [38] . As of 2003, more than 80 systems with a total collector area of 35,000 m2 were installed worldwide, including an 860 m2 collector in Costa Rica for drying coffee beans and a 1,300 m2 collector in Coimbatore (India) for drying marigolds [39] .
Water Treatment
Solar desalination can be used to turn salty or brackish water into drinking water. For the first time, an example of such a transformation was recorded by the Arab alchemists of the 16th century [40] . The first large-scale project of solar desalination was built in 1872 in the Chilean mining town of Las Salinas [41] . A plant that had a solar collector area of 4700 m2 could produce up to 22,700 liters of drinking water and remained in operation for 40 years [41] . Individual still designs include single-slope, double-slope (greenhouse or type), vertical, conical, inverted absorber, multi-wick, and multiple effect. [40] . These desalination plants can work in passive, active and hybrid modes. Double-slope Kazan is the most cost-effective for decentralized household needs, while active multiple effect units are more suitable for large-scale projects [40] .
For solar disinfection, water is poured into transparent PET bottles and placed for several hours under sunlight [42] . Disinfection time depends on climate and weather conditions, at least from 6 hours to 2 days, if the sky is completely covered with clouds [43] . This method was recommended by the World Health Organization as an affordable method of household water treatment and safe storage [44] . More than 2 million people in countries that are developing daily use this method to treat their drinking water [43] .
Solar energy can be used at average rates for wastewater treatment without chemicals and energy costs. Another environmental benefit is that algae live in such ponds and consume carbon dioxide during photosynthesis, although they can produce toxic substances that make water unsuitable for consumption [45] [46] .
Power Generation
Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию . Это может происходить или непосредственно, с использованием фотовольтаики , или косвенно, с использованием систем концентрированной солнечной энергии , в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект .
Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно [47] .
Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (150 МВт) и СЭС Андасол (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці : Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии . Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети [48] .
Архитектура и городское планирование
Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры [50] . Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом [51] .
Среди общих характеристик пассивной солнечной архитектуры : благоприятная ориентация зданий относительно Солнца, компактные пропорции (малое отношение площади поверхности к объему), выборочное затемнение (навесы) и тепловая масса [50] . Когда эти свойства удачно подобраны с учетом местного климата, то это обеспечивает хорошее освещение помещений и позволяет оставаться в комфортном диапазоне температур. Дом мегаронного типа Сократа — является классическим примером пассивной солнечной архитектуры [50] . На нынешнем этапе солнечного дизайна применяют компьютерное моделирование с помощью которой связывают между собой дневное освещение , а также системы солнечного обогрева и вентиляции в an integrated solar design package [52] . Активное солнечное оборудование, такое как насосы, вентиляторы и switchable windows может дополнить пассивный дизайн и улучшить показатели работы системы.
Городской тепловой остров (МТО) — это городской район, где температура выше, чем в окружающих сельских местностях. Выше температуры является следствием применения таких материалов как асфальт и бетон, которые лучше впитывают солнечное излучение, поскольку имеют ниже альбедо и выше теплоемкость , чем в окружающей среде. Чтобы непосредственно противодействовать эффекту, здания красят в белое и насаживают на улицах деревья. Согласно проекту гипотетической программы «cool communities» в Лос-Анджелеси , используя эти методы городскую температуру можно снизить примерно на 3 °C. Стоимость проекта оценивается в US$1 млрд, а общая годовая выгода может составлять US$530 млн благодаря уменьшению затрат на вентиляцию и охрану здоровья [53] .
Сельское хозяйство и растениеводство
(Скрытый викитекст)
Сельское хозяйство и растениеводство ищут способы оптимизировать впитывание солнечной энергии для того, чтобы повысить продуктивность растений.
Оранжерея превращают солнечный свет в тепло, обеспечивая круглогодичное выращивание растений, которые в природе не приспособлены для этого климата. Простейшие оранжереи использовали в римские времена, чтобы круглый год выращивать огурцы для императора Тиберия [54] . Современные В Европе в XVI веке появились оранжереи для выращивания растений, привезённых из исследовательских путешествий [55] .
See also
- Солнечная энергетика
- Energy saving
- Energy audit
- Энергоэффективность
- Пассивный дом
- Ветроэнергетика
- Энергосберегающая лампа
- Экологическая экспертиза
Notes
- ↑ Smil (1991), p. 240
- ↑ Радиационный и световой режим
- ↑ Natural Forcing of the Climate System (недоступная ссылка) . Intergovernmental Panel on Climate Change. Дата обращения 29 сентября 2007. Архивировано 29 сентября 2007 года.
- ↑ Сомервилл, Richard. Historical Overview of Climate Change Science (PDF). Intergovernmental Panel on Climate Change. Дата обращения 29 сентября 2007.
- ↑ Vermass, Wim. An Introduction to Photosynthesis and Its Applications (недоступная ссылка) . Arizona State University. Дата обращения 29 сентября 2007. Архивировано 3 декабря 1998 года.
- ↑ 1 2 Smil (2006), p. 12
- ↑ http://www.nature.com/nature/journal/v443/n7107/full/443019a.html
- ↑ Powering the Planet: Chemical challenges in solar energy utilization (PDF). Дата обращения 7 августа 2008.
- ↑ Energy conversion by organisms photosynthetic . Food and Agriculture Organization of the United Nations. Дата обращения 25 мая 2008.
- ↑ Exergy Flow Charts - GCEP . stanford.edu .
- ↑ Archer, Cristina. Evaluation of Global Wind Power . Stanford. Дата обращения 3 июня 2008.
- ↑ fa.upc.es/personals/fluids/oriol/ale/eolss.pdf Renewable Energy Sources . Renewable and Appropriate Energy Laboratory. Дата обращения 6 декабря 2012.
- ↑ Total Primary Energy Consumption . Energy Information Administration . Дата обращения 30 июня 2013.
- ↑ Total Electricity Consumption Net . Energy Information Administration . Дата обращения 30 июня 2013.
- ↑ 1 2 3 4 Energy and the challenge of sustainability (PDF). UN Development Programme and World Energy Council (сентябрь 2000). Дата обращения 17 января 2017.
- ↑ 1 2 Philibert, Cédric The Present and Future use of Solar Thermal Energy as a Primary Source of Energy . IEA (2005). Дата обращения 6 апреля 2018. Архивировано 12 декабря 2011 года.
- ↑ Solar Energy Technologies and Applications (недоступная ссылка) . Canadian Renewable Energy Network. Дата обращения 22 октября 2007. Архивировано 15 ноября 2007 года.
- ↑ V.+Boys/famous/4c880e9645e2ca90f61156a9efa6d16a CV Boys - Scientist . yatedo.com .
- ↑ Smith, Zachary Alden. Renewable And Alternative Energy Resources: A Reference Handbook. — ABC-CLIO , 2008. — P. 174. — ISBN 978-1-59884-089-6 . .
- ↑ American Inventor Uses egypt's Sun for Power - Appliance Concentrates the Heat Rays and Produces Steam, Which Can Be Used to Drive Irrigation Pumps in Hot Climates - View Article - NYTimes.com/date=2 July 1916 . nytimes.com .
- ↑ Renewables for Heating and Cooling (PDF). International Energy Agency. Дата обращения 13 августа 2015.
- ↑ Weiss, Werner. Solar Heat Worldwide (Markets and Contributions to the Energy Supply 2005) (PDF). International Energy Agency. Дата обращения 30 мая 2008. Архивировано 10 сентября 2008 года.
- ↑ Weiss, Werner. Solar Heat Worldwide – Markets and Contribution to the Energy Supply 2006 (PDF). International Energy Agency. Date of treatment June 9, 2008.
- ↑ Renewables 2007 Global Status Report (PDF). Worldwatch Institute. Дата обращения 30 апреля 2008. Архивировано 29 мая 2008 года.
- ↑ Del Chiaro, Bernadette. Solar Water Heating (California How Can Reduce Its Dependence on Natural Gas) (PDF). Environment California Research and Policy Center. Дата обращения 29 сентября 2007. Архивировано 27 сентября 2007 года.
- ↑ Apte, J. Future Advanced for Windows Zero-Energy Homes (PDF) (недоступная ссылка) . American Society of Heating, Refrigerating and Air-Conditioning Engineers. Дата обращения 9 апреля 2008. Архивировано 10 апреля 2008 года.
- ↑ Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III: Energy Savings Potential (PDF) 2-2. United States Department of Energy. Дата обращения 24 июня 2008.
- ↑ Mazria(1979), p. 29-35
- ↑ Bright, David Passive solar heating simpler for the average owner. . Bangor Daily News (18 февраля 1977). Дата обращения 3 июля 2011.
- ↑ Mazria(1979), p. 255
- ↑ Anderson and Palkovic (1994), p. xi
- ↑ Butti and Perlin (1981), p. 54-59
- ↑ Anderson and Palkovic (1994), p. xii
- ↑ Anderson and Palkovic (1994), p. xiii
- ↑ Stine, WB and Harrigan, R W. Shenandoah Total Solar Energy Project . John Wiley. Дата обращения 20 июля 2008.
- ↑ Bartlett (1998), p.393-394
- ↑ Thomson-Philbrook, Julia. Right to Dry Legislation in New England States and Other . Connecticut General Assembly. Дата обращения 27 мая 2008.
- ↑ 1 2 Solar Buildings (Transpired Air Collectors - Ventilation Preheating) (PDF). National Renewable Energy Laboratory. Дата обращения 29 сентября 2007.
- ↑ Error in footnotes ? : Invalid
<ref>; no reference forLeon 2006footnotes - ↑ 1 2 3 Tiwari (2003), p. 368-371
- ↑ 1 2 Daniels (1964), p. 6
- ↑ SODIS solar water disinfection . EAWAG (The Swiss Federal Institute for Environmental Science and Technology). Date of treatment May 2, 2008.
- ↑ 1 2 Household Water Treatment Options in Developing Countries: Solar Disinfection (SODIS) (PDF) (link not available) . Centers for Disease Control and Prevention. Date of treatment May 13, 2008. Archived May 29, 2008.
- ↑ Household Water Treatment and Safe Storage . World Health Organization. Date of treatment May 2, 2008.
- ↑ Shilton AN, Powell N., Mara DD, Craggs R. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO (2) scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilization ponds // Water Sci. Technol. : journal. - 2008 .-- Vol. 58 , no. 1 . - P. 253—258 . - DOI : 10.2166 / wst.2008.666 . - PMID 18653962 .
- ↑ Tadesse I., Isoaho SA, Green FB, Puhakka JA Removal of organics and nutrients from tannery effluent by advanced integrated Wastewater Pond Systems technology (Eng.) // Water Sci. Technol. : journal. - 2003. - Vol. 48 , no. 2 . - P. 307-314 . - PMID 14510225 .
- ↑ International Energy Agency. Technology Roadmap: Solar Photovoltaic Energy (PDF). http://www.iea.org . IEA (2014). Date of treatment October 7, 2014. Archived on October 7, 2014.
- ↑ Historical Data Workbook (2013 calendar year)
- ↑ Darmstadt University of Technology solar decathlon home design . Darmstadt University of Technology. Date of treatment April 25, 2008. Archived October 18, 2007.
- ↑ 1 2 3 Schittich (2003), p. 14
- ↑ Butti and Perlin (1981), p. 4, 159
- ↑ Balcomb (1992)
- ↑ Rosenfeld, Arthur; Romm, Joseph ; Akbari, Hashem; Lloyd, Alan. Painting the Town White - and Green (link not available) . Heat Island Group. Date of treatment September 29, 2007. Archived July 14, 2007.
- ↑ Butti and Perlin (1981), p. nineteen
- ↑ Butti and Perlin (1981), p. 41