Clever Geek Handbook
📜 ⬆️ ⬇️

Ellipse mandara

The Mandara ellipse (red) is inscribed in a triangle (black) at the points of contact of the sides with the extra circles (gray). Lines passing through the Nagel pointN {\ displaystyle N} N - green; lines passing through the center of the ellipseM {\ displaystyle M} M - blue.

Mandara ellipse - an ellipse inscribed in a given triangle, touching its sides at the points of contact with non-inscribed circles [1] .

It is named after the French mathematician Mandar ( H. Mandart ), who published studies of this object in 1893-1894 [2] [3] .

The center of the Mandar ellipse is one of the remarkable points of a triangle ( German: mittenpunkt ), found by Nagel in 1836 as the intersection point of the triangles of the triangle formed by the centers of its incircle circles [4] [5] . In the Encyclopedia of Triangle Centers, an identifier is assigned to a pointX(9) {\ displaystyle X (9)} {\ displaystyle X (9)} .

For inscribed conics, the inscribed Mandar ellipse is described by the parameters :

x:y:z=ab+c-a:ba+c-b:ca+b-c{\ displaystyle x: y: z = {\ frac {a} {b + ca}}: {\ frac {b} {a + cb}}: {\ frac {c} {a + bc}}} x: y: z = {\ frac {a} {b + c-a}}: {\ frac {b} {a + c-b}}: {\ frac {c} {a + b-c}} ,

Wherea {\ displaystyle a} a ,b {\ displaystyle b} b andc {\ displaystyle c} c - sides of a given triangle.

Notes

  1. ↑ Juhász Imre. Control point based representation of inellipses of triangles // Annales Mathematicae et Informaticae. - 2012 .-- T. 40 . - S. 37–46 .
  2. ↑ Gibert, Bernard (2004), " Generalized Mandart conics ", Forum Geometricorum T. 4: 177–198 , < http://forumgeom.fau.edu/FG2004volume4/FG200421.pdf >   .
  3. ↑ Mandart, H. (1893), "Sur l'hyperbole de Feuerbach", Mathesis : 81–89   ; Mandart, H. (1894), " Sur une ellipse associée au triangle ", Mathesis : 241–245 , < https://books.google.com/books?id=kqAKAAAAYAAJ&pg=PA241 >   . As cited by Gibert (2004 )
  4. ↑ Kimberling, Clark (1994), " Central Points and Central Lines in the Plane of a Triangle ", Mathematics Magazine T. 67 (3): 163–187 , DOI 10.2307 / 2690608  
  5. ↑ von Nagel, CH (1836), Untersuchungen über die wichtigsten zum Dreiecke gehörenden Kreise , Leipzig  
Source - https://ru.wikipedia.org/w/index.php?title=Ellips_Mandara&oldid=88073166


More articles:

  • Anasagasti
  • Museum of Cultural Heritage (Kiev)
  • Doroshenko, Vitaly Avramovich
  • Chastodubravsky Village Council
  • Rachinsky, Grigory Alekseevich
  • Grunino-Vorgolsky Village Council
  • Liquid, Vladimir Alexandrovich
  • Krasno-Polyansky Village Council
  • Kramar, Mikhail Polikarpovich
  • Lesno-Lokotetsky Village Council

All articles

Clever Geek | 2019