Clever Geek Handbook
📜 ⬆️ ⬇️

Pearson distribution

Pearson distribution is a continuous probability distribution whose probability density is a solution to the differential equationdf(x)dx=aonex+a0b0+2bonex+b2x2f(x) {\ displaystyle {\ frac {df (x)} {dx}} = {\ frac {a_ {1} x + a_ {0}} {b_ {0} + 2b_ {1} x + b_ {2} x ^ {2}}} f (x)} \ frac {df (x)} {dx} = \ frac {a_ {1} x + a_ {0}} {b_ {0} + 2b_ {1} x + b_ {2} x ^ {2}} f ( x) where are the numbersa0,aone,b0,bone,b2 {\ displaystyle a_ {0}, a_ {1}, b_ {0}, b_ {1}, b_ {2}} a_ {0}, a_ {1}, b_ {0}, b_ {1}, b_ {2} are distribution parameters. [1] Particular cases of Pearson distribution are beta distribution (Pearson distribution of type I), gamma distribution (Pearson distribution of type III), student distribution (Pearson distribution of type VII), exponential distribution (Pearson distribution of type X), normal distribution (distribution Pearson XI type). Pearson distributions are widely used in mathematical statistics to smooth out empirical data distributions. To approximate the probability distribution of the experimental data, the first four moments are calculated by numerical methods, and then the Pearson distribution parameters are calculated on their basis. [2]

Properties

Pearson distributions are completely determined by the first four moments of a random variable. Let beμk {\ displaystyle \ mu _ {k}} \mu_{k} is ank {\ displaystyle k} k the central moment of a random variable having a Pearson distribution. Then ifaone=one {\ displaystyle a_ {1} = 1} a_{1}=1 then

a0=μ3(μfour+3μ22)A{\ displaystyle a_ {0} = {\ frac {\ mu _ {3} (\ mu _ {4} +3 \ mu _ {2} ^ {2})} {A}}} a_{0}=\frac{\mu_{3}(\mu_{4}+3\mu_{2}^{2})}{A} ,
b0=-μ2(fourμ2μfour-3μ32)A{\ displaystyle b_ {0} = - {\ frac {\ mu _ {2} (4 \ mu _ {2} \ mu _ {4} -3 \ mu _ {3} ^ {2})} {A} }} b_{0}=-\frac{\mu_{2}(4\mu_{2}\mu_{4}-3\mu_{3}^{2})}{A} ,
bone=-μ3(fourμ2μfour+3μ22)A{\ displaystyle b_ {1} = - {\ frac {\ mu _ {3} (4 \ mu _ {2} \ mu _ {4} +3 \ mu _ {2} ^ {2})} {A} }} b_{1}=-\frac{\mu_{3}(4\mu_{2}\mu_{4}+3\mu_{2}^{2})}{A} ,
b2=-2μ2μfour-3μ32-6μ23A{\ displaystyle b_ {2} = - {\ frac {2 \ mu _ {2} \ mu _ {4} -3 \ mu _ {3} ^ {2} -6 \ mu _ {2} ^ {3} } {A}}} b_{2}=-\frac{2 \mu_{2} \mu_{4} - 3\mu_{3}^{2} - 6 \mu_{2}^{3}}{A} ,

WhereA=tenμfourμ2-18μ23-12μ32 {\ displaystyle A = 10 \ mu _ {4} \ mu _ {2} -18 \ mu _ {2} ^ {3} -12 \ mu _ {3} ^ {2}} A = 10 \mu_{4} \mu_{2} - 18 \mu_{2}^{3}- 12 \mu_{3}^{2} . [one]

Pearson Distribution Types

Depending on the distribution of the roots of the square trinomialb0+2bonex+b2x2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2}} {\displaystyle b_{0}+2b_{1}x+b_{2}x^{2}} There are 12 types of Pearson distributions. We denoteD=b0b2-bone2 {\ displaystyle D = b_ {0} b_ {2} -b_ {1} ^ {2}} D = b_{0}b_{2}-b_{1}^{2} ,λ=bone2b0b2 {\ displaystyle \ lambda = {\ frac {b_ {1} ^ {2}} {b_ {0} b_ {2}}}} \lambda = \frac{b_{1}^{2}}{b_{0}b_{2}} . [one]

Type I

Pearson Type I distributions are beta distributions. Conditions:D<0 {\ displaystyle D <0}   ,λ<0 {\ displaystyle \ lambda <0}   ,b0+2bonex+b2x2=(α+x)(-β+x)b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = (\ alpha + x) (- \ beta + x) b_ {2}}   ,α,β>0 {\ displaystyle \ alpha, \ beta> 0}   Probability Density:f(x)={α2mβ2n(α+β)m+n+oneB(m+one,n+one)(α+x)m(β-x)n,x∈[-α,β]0,x∉[-α,β] {\ displaystyle f (x) = {\ begin {cases} {\ frac {\ alpha ^ {2m} \ beta ^ {2n}} {(\ alpha + \ beta) ^ {m + n + 1} B (m + 1, n + 1)}} (\ alpha + x) ^ {m} (\ beta -x) ^ {n}, & x \ in [- \ alpha, \ beta] \\ 0, & x \ notin [- \ alpha, \ beta] \ end {cases}}}   whereB(m+one,n+one)=Γ(m+one)Γ(n+one)Γ(m+n+2) {\ displaystyle B (m + 1, n + 1) = {\ frac {\ Gamma (m + 1) \ Gamma (n + 1)} {\ Gamma (m + n + 2)}}}   ,m>-one,n>-one {\ displaystyle m> -1, n> -1}   . [one]

Type II

Conditions as for type I with additional conditionsα=β,m=n {\ displaystyle \ alpha = \ beta, m = n}   . [one]

Type III

Pearson type III distributions are gamma distributions. Conditions:D<0 {\ displaystyle D <0}   ,λ=∞ {\ displaystyle \ lambda = \ infty}   ,b0+2bonex+b2x2=2(α+x)bone {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = 2 (\ alpha + x) b_ {1}}   . Probability Density:f(x)={km+oneΓ(m+one)(α+x)me-k(α+x),x>-α,k>00,x⩽-α {\ displaystyle f (x) = {\ begin {cases} {\ frac {k ^ {m + 1}} {\ Gamma (m + 1)}} (\ alpha + x) ^ {m} e ^ {- k (\ alpha + x)}, & x> - \ alpha, k> 0 \\ 0, & x \ leqslant - \ alpha \ end {cases}}}   . [one]

Type IV

Conditions:D>0 {\ displaystyle D> 0}   ,0<λ<one {\ displaystyle 0 <\ lambda <1}   ,b0+2bonex+b2x2=(α2+x2)b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = (\ alpha ^ {2} + x ^ {2}) b_ {2}}   . Probability Density:f(x)=c(α2+x2)-mexp⁡-νarctan⁡xα {\ displaystyle f (x) = c (\ alpha ^ {2} + x ^ {2}) ^ {- m} \ exp {- \ nu \ arctan {\ frac {x} {\ alpha}}}}   ,x∈(-∞,∞) {\ displaystyle x \ in (- \ infty, \ infty)}   ,m⩾one2 {\ displaystyle m \ geqslant {\ frac {1} {2}}}   wherec-one=∫-∞∞(α2+x2)-mexp⁡-νarctan⁡xαdx {\ displaystyle c ^ {- 1} = \ int _ {- \ infty} ^ {\ infty} (\ alpha ^ {2} + x ^ {2}) ^ {- m} \ exp {- \ nu \ arctan {\ frac {x} {\ alpha}}} dx}   . [3]

V type

Conditions:D=0 {\ displaystyle D = 0}   ,λ=one {\ displaystyle \ lambda = 1}   ,b0+2bonex+b2x2=(α+x)2b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = (\ alpha + x) ^ {2} b_ {2}}   . Probability Density:f(x)={γm-oneΓm-onex-me-γx,γ>0,m>one,x>00,x⩽0 {\ displaystyle f (x) = {\ begin {cases} {\ frac {\ gamma ^ {m-1}} {\ Gamma {m-1}}} x ^ {- m} e ^ {- {\ frac {\ gamma} {x}}}, & \ gamma> 0, m> 1, x> 0 \\ 0, & x \ leqslant 0 \ end {cases}}}   . [3]

VI type

Conditions:D<0 {\ displaystyle D <0}   ,λ>one {\ displaystyle \ lambda> 1}   ,b0+2bonex+b2x2=(α+x)(x-β)b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = (\ alpha + x) (x- \ beta) b_ {2}}   . Probability Density:f(x)={(α+β)-(m+n+one)B(-m-n-one,n+one)(x+α)m(x-β)n,x>β,m-one>0,n>-one0,x⩽β {\ displaystyle f (x) = {\ begin {cases} {\ frac {(\ alpha + \ beta) ^ {- (m + n + 1)}} {B (-mn-1, n + 1)} } (x + \ alpha) ^ {m} (x- \ beta) ^ {n}, & x> \ beta, m-1> 0, n> -1 \\ 0, & x \ leqslant \ beta \ end {cases} }}   . [3]

VII type

The Pearson type VII distribution is the student distribution. Conditions:D>0 {\ displaystyle D> 0}   ,λ=0 {\ displaystyle \ lambda = 0}   ,b0+2bonex+b2x2=(α2+x2)b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = (\ alpha ^ {2} + x ^ {2}) b_ {2}}   . Probability Density:f(x)=αB(m-one2,one2)(α2+x2)-m {\ displaystyle f (x) = {\ frac {\ alpha} {B (m - {\ frac {1} {2}}, {\ frac {1} {2}})}} (\ alpha ^ {2 } + x ^ {2}) ^ {- m}}   ,x∈(-∞,∞) {\ displaystyle x \ in (- \ infty, \ infty)}   ,m⩾one2 {\ displaystyle m \ geqslant {\ frac {1} {2}}}   . [3]

VIII type

Conditions:D<0 {\ displaystyle D <0}   ,λ<0 {\ displaystyle \ lambda <0}   ,b0+2bonex+b2x2=x(x+α)b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = x (x + \ alpha) b_ {2}}   . Probability Density:f(x)={m+oneαm+one(x+α)m,x∈[-α,0],-one<m<00,x∉[-α,0] {\ displaystyle f (x) = {\ begin {cases} {\ frac {m + 1} {\ alpha ^ {m + 1}}} (x + \ alpha) ^ {m}, & x \ in [- \ alpha , 0], - 1 <m <0 \\ 0, & x \ notin [- \ alpha, 0] \ end {cases}}}   . [3]

IX type

Conditions:D<0 {\ displaystyle D <0}   ,λ<0 {\ displaystyle \ lambda <0}   ,b0+2bonex+b2x2=x(x+α)b2 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = x (x + \ alpha) b_ {2}}   . Probability Density:f(x)={m+oneαm+one(x+α)m,x∈[-α,0],m<-one0,x∉[-α,0] {\ displaystyle f (x) = {\ begin {cases} {\ frac {m + 1} {\ alpha ^ {m + 1}}} (x + \ alpha) ^ {m}, & x \ in [- \ alpha , 0], m <-1 \\ 0, & x \ notin [- \ alpha, 0] \ end {cases}}}   . [3]

X type

The Pearson type X distribution is an exponential distribution. Conditions:D=0 {\ displaystyle D = 0}   ,λ=0 {\ displaystyle \ lambda = 0}   ,b0+2bonex+b2x2=b0 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = b_ {0}}   ,aone=0 {\ displaystyle a_ {1} = 0}   . Probability Density:f(x)={γe-γx,x>0,γ>00,x⩽0 {\ displaystyle f (x) = {\ begin {cases} \ gamma e ^ {- \ gamma x}, & x> 0, \ gamma> 0 \\ 0, & x \ leqslant 0 \ end {cases}}}   [2]

XI Type

The Pearson type XI distribution is the normal distribution. Conditions:D=0 {\ displaystyle D = 0}   ,λ {\ displaystyle \ lambda}   vaguelyb0+2bonex+b2x2=b0 {\ displaystyle b_ {0} + 2b_ {1} x + b_ {2} x ^ {2} = b_ {0}}   . Probability Density:f(x)=one2πσexp⁡-x22σ2,x∈(-∞,∞) {\ displaystyle f (x) = {\ frac {1} {{\ sqrt {2 \ pi}} \ sigma}} \ exp {- {\ frac {x ^ {2}} {2 \ sigma ^ {2} }}}, x \ in (- \ infty, \ infty)}   . [2]

XII type

Conditions as for type I with additional conditionsα=β,m=-n {\ displaystyle \ alpha = \ beta, m = -n}   . [one]

Notes

  1. ↑ 1 2 3 4 5 6 7 Korolyuk, 1985 , p. 133.
  2. ↑ 1 2 3 Korolyuk, 1985 , p. 135.
  3. ↑ 1 2 3 4 5 6 Korolyuk, 1985 , p. 134.

Literature

  • Korolyuk V.S. , Portenko N.I. , Skorohod A.V. , Turbin A.F. Handbook of probability theory and mathematical statistics. - M .: Nauka, 1985 .-- 640 p.
Source - https://ru.wikipedia.org/w/index.php?title=Pearson_ distribution &oldid = 100110729


More articles:

  • All I Want for Christmas Is You
  • Morey, Robert
  • Miran, Mahmoud
  • Changottini Valeria
  • Survivor Series (2015)
  • The year 1774 in science
  • Khadija Al Salami
  • Garwolin County
  • Shami Goddess
  • To the last drop of blood

All articles

Clever Geek | 2019