Clever Geek Handbook
📜 ⬆️ ⬇️

Besov's space

Spaces of BesovBp,qs(R) {\ displaystyle B_ {p, q} ^ {s} (\ mathbb {R})} {\ displaystyle B_ {p, q} ^ {s} (\ mathbb {R})} - complete spaces of functions that are Banach for 1 ≤ p , q ≤ ∞ . Named in honor of the developer - Soviet mathematician Oleg Vladimirovich Besov . These spaces, along with the Tribel – Lizorkin spaces defined in a similar way, are a generalization of simpler function spaces and are used to determine the regularity of functions.

Definition

There are several equivalent definitions, one of them is given here.

Let be

Δhf(x)=f(x+h)-f(x){\ displaystyle \ Delta _ {h} f (x) = f (x + h) -f (x)} {\displaystyle \Delta _{h}f(x)=f(x+h)-f(x)}

and the modulus of continuity is defined as

ωp2(f,t)=sup|h|≤t‖Δh2f‖p.{\ displaystyle \ omega _ {p} ^ {2} (f, t) = \ sup _ {| h | \ leq t} \ left \ | \ Delta _ {h} ^ {2} f \ right \ | _ {p}.} \omega^2_p(f,t) = \sup_{|h| \le t} \left \| \Delta^2_h f \right \|_p.

Let n be a non-negative integer and s = n + α with 0 < α ≤ 1 . Besov's spaceBp,qs(R) {\ displaystyle B_ {p, q} ^ {s} (\ mathbb {R})} {\displaystyle B_{p,q}^{s}(\mathbb {R} )} consists of functions f such that

f∈Wn,p(R),∫0∞|ωp2(f(n),t)tα|qdtt<∞,{\ displaystyle f \ in W ^ {n, p} (\ mathbb {R}), \ qquad \ int _ {0} ^ {\ infty} \ left | {\ frac {\ omega _ {p} ^ {2 } \ left (f ^ {(n)}, t \ right)} {t ^ {\ alpha}}} \ right | ^ {q} {\ frac {dt} {t}} <\ infty,} {\displaystyle f\in W^{n,p}(\mathbb {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty ,}

WhereW¯n,p(R) {\ displaystyle {\ bar {W}} ^ {n, p} (\ mathbb {R})} {\displaystyle {\bar {W}}^{n,p}(\mathbb {R} )} - Sobolev space .

Norma

In the Besov spaceBp,qs(R) {\ displaystyle B_ {p, q} ^ {s} (\ mathbb {R})} {\displaystyle B_{p,q}^{s}(\mathbb {R} )} there is a norm

‖f‖Bp,qs(R)=(‖f‖Wn,p(R)q+∫0∞|ωp2(f(n),t)tα|qdtt)oneq{\ displaystyle \ left \ | f \ right \ | _ {B_ {p, q} ^ {s} (\ mathbb {R})} = \ left (\ | f \ | _ {W ^ {n, p} (\ mathbb {R})} ^ {q} + \ int _ {0} ^ {\ infty} \ left | {\ frac {\ omega _ {p} ^ {2} \ left (f ^ {(n) }, t \ right)} {t ^ {\ alpha}}} \ right | ^ {q} {\ frac {dt} {t}} \ right) ^ {\ frac {1} {q}}} {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbb {R} )}=\left(\|f\|_{W^{n,p}(\mathbb {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}}

Spaces of BesovB2,2s(R) {\ displaystyle B_ {2,2} ^ {s} (\ mathbb {R})} {\displaystyle B_{2,2}^{s}(\mathbb {R} )} coincide with more ordinary Sobolev spacesHs(R) {\ displaystyle H ^ {s} (\ mathbb {R})} {\displaystyle H^{s}(\mathbb {R} )} .

If ap=q {\ displaystyle p = q} p=q ands {\ displaystyle s} s Is not an integer thenBp,ps(R)=W¯s,p(R) {\ displaystyle B_ {p, p} ^ {s} (\ mathbb {R}) = {\ bar {W}} ^ {s, p} (\ mathbb {R})} {\displaystyle B_{p,p}^{s}(\mathbb {R} )={\bar {W}}^{s,p}(\mathbb {R} )} whereW¯s,p(R) {\ displaystyle {\ bar {W}} ^ {s, p} (\ mathbb {R})} {\displaystyle {\bar {W}}^{s,p}(\mathbb {R} )} - Sobolev space .


Embedding Theorem

Let beone<p⩽q<∞ {\ displaystyle 1 <p \ leqslant q <\ infty}   ,-∞<t⩽s<∞ {\ displaystyle - \ infty <t \ leqslant s <\ infty}   ,r∈[one,∞] {\ displaystyle r \ in [1, \ infty]}   .

If equality holdss-n/p=t-n/q, {\ displaystyle sn / p = tn / q,}   then there is continuous investment

Bp,rs(Rn)⊂Bq,rt(Rn).{\ displaystyle B_ {p, r} ^ {s} (\ mathbb {R} ^ {n}) \ subset B_ {q, r} ^ {t} (\ mathbb {R} ^ {n}).}  

If as=n/p+t {\ displaystyle s = n / p + t}   ,t>0 {\ displaystyle t> 0}   and at least one of two conditions is satisfied:r=one {\ displaystyle r = 1}   ort {\ displaystyle t}   not an integer, then the embedding is true

Bp,rs(Rn)⊂Ct(Rn).{\ displaystyle B_ {p, r} ^ {s} (\ mathbb {R} ^ {n}) \ subset C ^ {t} (\ mathbb {R} ^ {n}).}  


Note : whens<0,q≠one {\ displaystyle s <0, \ q \ neq 1}   spaceBp,rs(Rn) {\ displaystyle B_ {p, r} ^ {s} (\ mathbb {R} ^ {n})}   can be understood as a space conjugate toBp′,r′s′(Rn) {\ displaystyle B_ {p ', r'} ^ {s'} (\ mathbb {R} ^ {n})}   wheres′=-s,one/p+one/p′=one,one/r+one/r′=one. {\ displaystyle s' = - s, \ 1 / p + 1 / p '= 1, \ 1 / r + 1 / r' = 1.}  

Interpolation of Besov spaces

Let bes0,sone∈R {\ displaystyle s_ {0}, s_ {1} \ in \ mathbb {R}}   ,s0≠sone,p∈(one,∞) {\ displaystyle s_ {0} \ neq s_ {1}, \ p \ in (1, \ infty)}   ,qone,q2,q∈[one,∞],θ∈(0,one) {\ displaystyle q_ {1}, q_ {2}, q \ in [1, \ infty], \ \ theta \ in (0,1)}   .

Then for interpolation spaces the following equality is true(Bp,qones0(Rn),Bp,q2sone(Rn))θ,q=Bp,q(one-θ)s0+θsone(Rn). {\ displaystyle \ left (B_ {p, q_ {1}} ^ {s_ {0}} (\ mathbb {R} ^ {n}), B_ {p, q_ {2}} ^ {s_ {1}} (\ mathbb {R} ^ {n}) \ right) _ {\ theta, q} = B_ {p, q} ^ {(1- \ theta) s_ {0} + \ theta s_ {1}} (\ mathbb {R} ^ {n}).}  

Literature

  • O.V. Besov, “On a certain family of function spaces. Embedding and Continuation Theorems ”, Dokl. USSR Academy of Sciences, 126: 6 (1959), 1163–1165
  • Triebel, H. "Theory of Function Spaces II". (eng.)
  • Tribel, H. "Interpolation Theory, Function Spaces, Differential Operators", 1980.
  • DeVore, R. and Lorentz, G. "Constructive Approximation", 1993. (English)
  • DeVore, R., Kyriazis, G. and Wang, P. " Multiscale characterizations of Besov spaces on bounded domains ", Journal of Approximation Theory 93, 273-292 (1998). (eng.)

Links

  • 9.2 Besov Spaces / D. Picard, Wavelets, Approximation, and Statistical Applications (translation by K. A. Alekseev), ISBN 978-1-4612-2222-4 , 1998


Source - https://ru.wikipedia.org/w/index.php?title=Besova_space&oldid=84043921


More articles:

  • Shatin, Andrei Yuryevich
  • Latvian Premier League doubles championship 2007
  • Bondarenko, Dmitry Nikiforovich
  • Gutman, Abram Efimovich
  • Austin 7
  • Ismail Kemali University (Vlore)
  • Tula orthohantavirus
  • Unguarded ramps
  • Shilale
  • Mednikov Stream

All articles

Clever Geek | 2019