Clever Geek Handbook
📜 ⬆️ ⬇️

Hexagonal antiprism

Homogeneous Hexagonal Antiprism
Hexagonal antiprism
Type ofPrismatic
homogeneous polyhedron
ItemsFacets 14, ribs 24,
peaks 12
Euler's
characteristic
χ{\ displaystyle \ chi} \ chi = 2
Faces by the number of parties12 {3} +23 {6}
Wythoff Symbol| 2 2 6
Shlefly Symbols {2, 12} sr {2, 6}
Charts
Coxeter
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 12.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node h.png
Symmetry groupD 6d , [2 + b 12], (2 * 6),
24 orders
Rotation groupD 6 , [6,2] + , (622),
12 orders
DesignationsU 77 (d)
The propertiesconvex
Vertex figure
Vertex figure
3.3.3.6
Dual


Hexagonal
trapezohedron
( dual
polyhedron )

In geometry, hexagonal antiprism is the 4th in an infinite number of antiprisms formed by an even number of triangular sides between two hexagonal sides.

If all faces are correct, the polyhedron is semiregular .

Related Polyhedrons

Hexagonal faces can be replaced by coplanar triangles (located in the same plane), which will lead to a non-convex polyhedron with 24 regular triangles.

 
Homogeneous hexagonal dihedral spherical polyhedrons
Symmetry |: [6,2] , (* 622)[6,2] + , (622)[6,2 + ], (2 * 3)
         
                                             
{6,2}t {6,2}r {6,2}t {2,6}{2.6}rr {2,6}sr {6,2}s {2,6}
Polyhedrons dual to them
         
V6 2V12 2V6 2V2 6V4.4.12V3.3.3.3
Family of homogeneous antiprisms n .3.3.3
Polyhedron           
Mosaic        
ConfigurationV2.3.3.33.3.3.34.3.3.35.3.3.36.3.3.37.3.3.38.3.3.39.3.3.310.3.3.311.3.3.312.3.3.3... ∞.3.3.3

Links

  • Weisstein, Eric W. Antiprism on the Wolfram MathWorld website.
  • Hexagonal Antiprism: Interactive Polyhedron model
  • Virtual Reality Polyhedra www.georgehart.com: The Encyclopedia of Polyhedra
    • VRML model
    • Conway Notation for Polyhedra Try: "A6"
Source - https://ru.wikipedia.org/w/index.php?title= Hexagonal_antiprism&oldid = 95829618


More articles:

  • Popova, Maria Andreyevna
  • Bream
  • DB-108
  • Probrachylophosaurus
  • Pentagonal Prism
  • Ioffe, Ezri Izrailevich
  • Poroysky Village Council
  • Hilmar, Hera
  • Putyatinsky Village Council (Lipetsk Region)
  • Nazimikha

All articles

Clever Geek | 2019