Clever Geek Handbook
📜 ⬆️ ⬇️

Jacobstal numbers

Jacobstal numbers are an named after the German mathematician E. E. Jacobstal .

Content

Jacobstal numbers

Like Fibonacci numbers , Jacobstal numbers are one of Luke's sequences

Un(P,Q),{\ displaystyle U_ {n} (P, Q),}  

for which P = 1 and Q = −2 [1] . The sequence begins with numbers [1] [2]

0, 1, 1, 3 , 5 , 11 , 21 , 43 , 85 , 171, 341 , 683, 1365, 2731, 5461, 10 923, 21 845, 43 691, 87 381, 174 763, 349 525, ...

Jacobstal numbers are determined by the recurrence relation [1] [2]

Jn={0,n=0;one,n=one;Jn-one+2Jn-2,n>one.{\ displaystyle J_ {n} = {\ begin {cases} 0, & n = 0; \\ 1, & n = 1; \\ J_ {n-1} + 2J_ {n-2}, & n> 1. \\ \ end {cases}}}  

Other options for recursive sequence assignment [2] :

  • Jn+one=2Jn+(-one)n{\ displaystyle J_ {n + 1} = 2J_ {n} + (- 1) ^ {n}}  
  • Jn+one=2n-Jn{\ displaystyle J_ {n + 1} = 2 ^ {n} -J_ {n}}  

The Jacobstal number with a given number can be calculated using the formula [1] [2]

Jn=2n-(-one)n3.{\ displaystyle J_ {n} = {\ frac {2 ^ {n} - (- 1) ^ {n}} {3}}.}  

Jacobstal-Luc numbers

Jacobstal-Luc numbers represent the sequence of LucVn(one,-2) {\ displaystyle V_ {n} (1, -2)}   . They satisfy the same recurrence relations as the Jacobstal numbers, but differ in initial values [1] :

jn={2,n=0;one,n=one;jn-one+2jn-2,n>one.{\ displaystyle j_ {n} = {\ begin {cases} 2, & n = 0; \\ 1, & n = 1; \\ j_ {n-1} + 2j_ {n-2}, & n> 1. \\ \ end {cases}}}  

Alternative formula [3] :

jn+one=2jn-3(-one)n.{\ displaystyle j_ {n + 1} = 2j_ {n} -3 (-1) ^ {n}.}  

The Jacobstal-Luc number with a given number can be calculated using the formula [3]

jn=2n+(-one)n.{\ displaystyle j_ {n} = 2 ^ {n} + (- 1) ^ {n}.}  

The Jacobstal-Luc sequence begins with the numbers [1] [3]

2, 1, 5 , 7 , 17 , 31 , 65 , 127 , 257 , 511 , 1025, 2047, 4097, 8191, 16 385, 32 767, 65 537 , 131 071, 262 145, 524 287, 1,048 577, ...

Notes

  1. ↑ 1 2 3 4 5 6 Weisstein, Eric W. Jacobsthal Number on the Wolfram MathWorld website.
  2. ↑ 1 2 3 4 A001045 sequence in OEIS = Jacobsthal sequence
  3. ↑ 1 2 3 Sequence A014551 in OEIS = Jacobsthal-Lucas numbers

Literature

  • AF Horadam . Jacobsthal representation numbers (English) (May 1994).
  • Paul Barry . Triangle Geometry and Jacobsthal Numbers (English) , Irish Math. Soc. Bulletin (April 2003).
  • Zvonko Čerin . Sums of Squares and Products of Jacobsthal Numbers , Journal of Integer Sequences.

Links

  • Sequence

A049883 at OEIS : Jacobstal Primes

Source - https://ru.wikipedia.org/w/index.php?title=Jacobstal_Numbers&oldid=97248270


More articles:

  • Newspaper (Town)
  • Kubulskaya parish
  • Diiodotetracarbonylruthenium
  • Parvin Ali
  • Loboscelidia laminata
  • Zeytlenok, Grigory Abramovich
  • Ilyushenko, Vasily Ivanovich
  • Negeli, Karl Wilhelm von
  • Dyachkova, Liliya Ivanovna
  • Komi-Perm District Committee of the CPSU

All articles

Clever Geek | 2019