Clever Geek Handbook
📜 ⬆️ ⬇️

Function Campe de Ferrier

The Campé de Ferrier function is a generalized hypergeometric function of two variables, introduced into circulation by the French mathematician Joseph Campe de Ferrier and named in his honor:

p+qfr+s(aone,⋯,ap:bone,bone′;⋯;bq,bq′;cone,⋯,cr:done,done′;⋯;ds,ds′;x,y)=∑m=0∞∑n=0∞ ( a one ) m + n ⋯ ( a p ) m + n ( c one ) m + n ⋯ ( c r ) m + n ( b one ) m ( b one ′ ) n ⋯ ( b q ) m ( b q ′ ) n ( d one ) m ( d one ′ ) n ⋯ ( d s ) m ( d s ′ ) n ⋅ x m y n m ! n ! .{\ displaystyle {} ^ {p + q} f_ {r + s} \ left ({\ begin {matrix} a_ {1}, \ cdots, a_ {p} \ colon b_ {1}, b_ {1} { } '; \ cdots; b_ {q}, b_ {q} {}'; \\ c_ {1}, \ cdots, c_ {r} \ colon d_ {1}, d_ {1} {} '; \ cdots ; d_ {s}, d_ {s} {} '; \ end {matrix}} x, y \ right) = \ sum _ {m = 0} ^ {\ infty} \ sum _ {n = 0} ^ { \ infty} {\ frac {(a_ {1}) _ {m + n} \ cdots (a_ {p}) _ {m + n}} {(c_ {1}) _ {m + n} \ cdots ( c_ {r}) _ {m + n}}} {\ frac {(b_ {1}) _ {m} (b_ {1} {} ') _ {n} \ cdots (b_ {q}) _ { m} (b_ {q} {} ') _ {n}} {(d_ {1}) _ {m} (d_ {1} {}') _ {n} \ cdots (d_ {s}) _ { m} (d_ {s} {} ') _ {n}}} \ cdot {\ frac {x ^ {m} y ^ {n}} {m! n!}}.} {} ^ {p + q} f_ {r + s} \ left (\ begin {matrix} a_1, \ cdots, a_p \ colon b_1, b_1 {} '; \ cdots; b_q, b_q {}'; \\ c_1 , \ cdots, c_r \ colon d_1, d_1 {} '; \ cdots; d_s, d_s {}'; \ end {matrix} x, y \ right) = \ sum_ {m = 0} ^ \ infty \ sum_ {n = 0} ^ \ infty \ frac {(a_1) _ {m + n} \ cdots (a_p) _ {m + n}} {(c_1) _ {m + n} \ cdots (c_r) _ {m + n }} \ frac {(b_1) _m (b_1 {} ') _ n \ cdots (b_q) _m (b_q {}') _ n} {(d_1) _m (d_1 {} ') _ n \ cdots (d_s) _m (d_s {} ') _ n} \ cdot \ frac {x ^ my ^ n} {m! n!}.

Notes

  • Exton, Harold (1978), Handbook of hypergeometric integrals , Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-122-0 , < https://books.google.com/books?id= fUHvAAAAMAAJ >  
  • Kampé de Fériet, MJ (1937), La fonction hypergéométrique. , vol. 85, Mémorial des sciences mathématiques, Paris: Gauthier-Villars , < https://books.google.com/books?id=JObuAAAAMAAJ >  
  • Ragab, FJ Expansions of Kampe de Feriet's double hypergeometric function of higher order ( Journal ) // Journal für die reine und angewandte Mathematik | J. f. reine angew. Mathem. : journal. - 1963. - No. 212 . - P. 113-119 . - DOI : 10.1515 / crll.1963.212.113 .

Links

  • Weisstein, Eric W. Function Campe de Ferrier (English) on the site Wolfram MathWorld .
Source - https://ru.wikipedia.org/w/index.php?title=Campé_de_Ferrier_function&oldid=100979910


More articles:

  • City settlement Staritsa
  • Female students go here
  • Georgy Aleksandrovich
  • Murchich, Daria Dmitrievna
  • Beresnev, Nikolai Yakovlevich
  • Hawthorne Kim
  • Leggings
  • Key generation function
  • Albertadromeus
  • Adleiba, Amiran Sardionovich

All articles

Clever Geek | 2019