Clever Geek Handbook
📜 ⬆️ ⬇️

Iterated Logarithm

Decimallg∗four=2 {\ displaystyle \ scriptstyle {\ lg * 4 = 2}} {\ displaystyle \ scriptstyle {\ lg * 4 = 2}}

Iterated Logarithmlog∗⁡n {\ displaystyle \ log ^ {*} n} {\ displaystyle \ log ^ {*} n} in mathematics and computer science it is defined as an integer function equal to the number of iterative logarithms of the argument necessary for the result to become less than or equal to 1 . This function is defined for all positive numbers, but in applications, the argument is usually a natural number . A more strictly iterated logarithm is determined by a recursive formula:

log∗⁡n: ={0ifn⩽one;one+log∗⁡(log⁡n)ifn>one{\ displaystyle \ log ^ {*} n: = {\ begin {cases} 0 & {\ mbox {if}} n \ leqslant 1; \\ 1+ \ log ^ {*} (\ log n) & {\ mbox {if}} n> 1 \ end {cases}}} {\ displaystyle \ log ^ {*} n: = {\ begin {cases} 0 & {\ mbox {if}} n \ leqslant 1; \\ 1+ \ log ^ {*} (\ log n) & {\ mbox {if}} n> 1 \ end {cases}}}

Iterated logarithm defined for basesb>eone/e≈1,444667 {\ displaystyle b> e ^ {1 / e} \ approx 1 {,} 444667} {\ displaystyle b> e ^ {1 / e} \ approx 1 {,} 444667} A073229 . If positiveb<eone/e {\ displaystyle b <e ^ {1 / e}} {\ displaystyle b <e ^ {1 / e}} , then its recursive sequence converges to a number greater than 1.

Computer science usually uses a binary iterated logarithm. This function grows unlimitedly, but extremely slowly. For all arguments conceivable in practice, it could be replaced by a constant, but for formulas defined on the entire numerical axis, such a record would be erroneous. The values ​​of the binary iterated logarithm for all practically interesting arguments do not exceed 5 and are given below.

nlog2∗⁡n{\ displaystyle \ log _ {2} ^ {*} n} {\ displaystyle \ log _ {2} ^ {*} n}
(−∞, 1]0
(12]one
(2, 4]2
(4, 16]3
(16, 65536]four
(65536, 2 65536 (~ 10 19660 )]five

Application

The iterated logarithm arises in the analysis of some algorithms in estimates of their computational complexity [1] [2] [3] [4] [5] The most famous estimate of the time complexity of the Fuhrer algorithm for multiplying integers isO(nlog⁡n⋅2O(log∗⁡n)) {\ displaystyle O (n \ log n \ cdot 2 ^ {O (\ log ^ {*} n)})} {\displaystyle O(n\log n\cdot 2^{O(\log ^{*}n)})} , and an estimate for the 3-coloring algorithmn {\ displaystyle n} n -cycle in the graph -O(log∗⁡n) {\ displaystyle O (\ log ^ {*} n)} {\displaystyle O(\log ^{*}n)} [6]

Notes

  1. ↑ Olivier Devillers, “Randomization yields simple O (n log * n) algorithms for difficult ω (n) problems.” International Journal of Computational Geometry & Applications 2 : 01 (1992), pp. 971-11.
  2. ↑ Noga Alon and Yossi Azar, “Finding an Approximate Maximum.” SIAM Journal of Computing 18 : 2 (1989), pp. 2582–67.
  3. ↑ On Separators, Segregators and Time versus Space
  4. ↑ https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf
  5. ↑ Schneider, J. (2008), "A log-star distributed maximal independent set algorithm for growth-bounded graphs" , Proceedings of the Symposium on Principles of Distributed Computing  
  6. ↑ Richard Cole and Uzi Vishkin: “Deterministic coin tossing with applications to optimal parallel list ranking”, Information and Control 70: 1 (1986), pp. 325-3.
Source - https://ru.wikipedia.org/w/index.php?title= Iterated_logarithm &oldid = 85656930


More articles:

  • Akmurun (mountain)
  • Lucgarier
  • Phocas, Athanasios
  • Guy Kalpetan Rantius Quirinale Valery Fest
  • Plouet Grand Prix 2015
  • Vlahina (Republika Srpska)
  • Rostov Region of the North Caucasus Railway
  • Caro, Danilo
  • Sumulu
  • Catalyst

All articles

Clever Geek | 2019