Clever Geek Handbook
📜 ⬆️ ⬇️

The square root of the matrix

The square root of a matrix is an extension of the concept of a numerical square root to a ring of square matrices .

Content

  • 1 Definition
  • 2 Existence and uniqueness
  • 3 Positive definite matrices
  • 4 Literature
  • 5 notes

Definition

MatrixB {\ displaystyle \ mathbf {B}}   called the square root of the matrixA {\ displaystyle \ mathbf {A}}   if squareB, {\ displaystyle \ mathbf {B},}   i.e. matrix productBB, {\ displaystyle \ mathbf {BB},}   matches the matrixA. {\ displaystyle \ mathbf {A}.}  

Existence and Uniqueness

Not all matrices have a square root. For example, the matrix has no root(0a00),a≠0 {\ displaystyle \ left ({\ begin {smallmatrix} 0 & a \\ 0 & 0 \ end {smallmatrix}} \ right), a \ neq 0}   . This matrix is ​​also a zero divisor and the square root of zero. Thus, in a matrix ring, zero has infinitely many square roots.

In cases where the root exists, it is not always uniquely determined. For example, the matrix(33244857) {\ displaystyle \ left ({\ begin {smallmatrix} 33 & 24 \\ 48 & 57 \ end {smallmatrix}} \ right)}   has four roots:±(onefour85) {\ displaystyle \ pm \ left ({\ begin {smallmatrix} 1 & 4 \\ 8 & 5 \ end {smallmatrix}} \ right)}   and±(52four7) {\ displaystyle \ pm \ left ({\ begin {smallmatrix} 5 & 2 \\ 4 & 7 \ end {smallmatrix}} \ right)}   .

Unit matrix(one00one) {\ displaystyle {\ bigl (} {\ begin {smallmatrix} 1 & 0 \\ 0 & 1 \ end {smallmatrix}} {\ bigr)}}   has the following 6 roots among matrices consisting of0 {\ displaystyle 0}   ,-one {\ displaystyle -1}   and+one {\ displaystyle +1}   :

(±one00±one),(±one00∓one),(0±one±one0);{\ displaystyle \ left ({\ begin {matrix} \ pm 1 & 0 \\ 0 & \ pm 1 \ end {matrix}} \ right), \ quad \ left ({\ begin {matrix} \ pm 1 & 0 \\ 0 & \ mp 1 \ end {matrix}} \ right), \ quad \ left ({\ begin {matrix} 0 & \ pm 1 \\\ pm 1 & 0 \ end {matrix}} \ right);}  

and also infinitely many symmetric rational square roots of the form:

onet(srr-s),onet(s-r-r-s),onet(-srrs),onet(-s-r-rs),{\ displaystyle {\ frac {1} {t}} \ left ({\ begin {matrix} s & r \\ r & -s \ end {matrix}} \ right), \ quad {\ frac {1} {t}} \ left ({\ begin {matrix} s & -r \\ - r & -s \ end {matrix}} \ right), \ quad {\ frac {1} {t}} \ left ({\ begin {matrix} - s & r \\ r & s \ end {matrix}} \ right), \ quad {\ frac {1} {t}} \ left ({\ begin {matrix} -s & -r \\ - r & s \ end {matrix}} \ right),}  

Where(r,s,t) {\ displaystyle (r, s, t)}   Is an arbitrary Pythagorean triple , that is, a triple of natural numbers for whichr2+s2=t2 {\ displaystyle r ^ {2} + s ^ {2} = t ^ {2}}   .

The difficulty of extracting the root from the matrix is ​​due to the fact that the matrix ring is non-commutative and has zero divisors, that is, it is not a domain of integrity . In the field of integrity, for example, in the ring of polynomials above a field , every element has no more than two square roots.

Positive definite matrices

A positive definite matrix always has exactly one positive definite root, which is called an arithmetic square root [1] .

All in all, a positive definite matrixA {\ displaystyle A}   of ordern {\ displaystyle n}   with different eigenvalues has2n {\ displaystyle 2 ^ {n}}   roots. Expanding such a matrix in eigenvectors, we obtain its representation in the formA=VDV-one, {\ displaystyle \ mathbf {A} = \ mathbf {VDV ^ {- 1}},}   WhereD {\ displaystyle \ mathbf {D}}   - diagonal matrix with eigenvaluesλi>0 {\ displaystyle \ lambda _ {i}> 0}   . Then the square roots of the matrixA {\ displaystyle A}   have the formVDone2V-one, {\ displaystyle \ mathbf {VD ^ {\ frac {1} {2}} V ^ {- 1}},}   WhereDone2 {\ displaystyle \ mathbf {D ^ {\ frac {1} {2}}}}   - diagonal matrix with elements±λi {\ displaystyle \ pm {\ sqrt {\ lambda _ {i}}}}   on the diagonal.

Literature

  • Gantmakher F.R. Matrix theory. M .: GITTL, 1953, S. 212-219.
  • Voevodin V.V., Voevodin Vl. B. Encyclopedia of linear algebra. Electronic system LINEAL. SPb .: BHV-Petersburg, 2006.

Notes

  1. ↑ Valentin Vasilievich Voevodin, Yuri Alekseevich Kuznetsov. Matrices and calculations . - "Science," Chap. ed. physical and mathematical literature, 1984. - S. 88-89. - 330 p.


Source - https://ru.wikipedia.org/w/index.php?title= Square_matrix_root&oldid = 92993770


More articles:

  • Osaka, Naomi
  • Transmissible spongiform encephalopathies
  • Sands Flora
  • Mustang (film)
  • Bauer, Paul
  • Government Communications Security Service
  • Yakimansky, Vasily Vladimirovich
  • Nymph (biology)
  • Revelly, Herve
  • Tomashevich, Ivan (general)

All articles

Clever Geek | 2019