Clever Geek Handbook
📜 ⬆️ ⬇️

Integral cosine

Integral cosine plot for 0 < x ≤ 8π.

The integral cosine is a special function defined by the integral [1]

Ci⁡(x)=-∫x∞cos⁡ttdt{\ displaystyle \ operatorname {Ci} (x) = - \ int \ limits _ {x} ^ {\ infty} {\ frac {\ cos t} {t}} dt} {\ displaystyle \ operatorname {Ci} (x) = - \ int \ limits _ {x} ^ {\ infty} {\ frac {\ cos t} {t}} dt}

or:

γ+ln⁡x+∫0xcos⁡t-onetdt{\ displaystyle \ gamma + \ ln x + \ int \ limits _ {0} ^ {x} {\ frac {\ cos t-1} {t}} \, dt} {\ displaystyle \ gamma + \ ln x + \ int \ limits _ {0} ^ {x} {\ frac {\ cos t-1} {t}} \, dt}

Whereγ {\ displaystyle \ gamma} \ gamma - Euler-Mascheroni constant .

Other definitions are sometimes used:

Cin⁡(x)=∫0xone-cos⁡ttdt{\ displaystyle \ operatorname {Cin} (x) = \ int \ limits _ {0} ^ {x} {\ frac {1- \ cos t} {t}} \, dt} {\ displaystyle \ operatorname {Cin} (x) = \ int \ limits _ {0} ^ {x} {\ frac {1- \ cos t} {t}} \, dt}
Cin⁡(x)=γ+ln⁡x-Ci⁡(x).{\ displaystyle \ operatorname {Cin} (x) = \ gamma + \ ln x- \ operatorname {Ci} (x).} {\ displaystyle \ operatorname {Cin} (x) = \ gamma + \ ln x- \ operatorname {Ci} (x).}

It is also possible to determine the integral cosine through the integral exponential function by analogy with the usual cosine [2] :

Ci⁡(x)=one2(Ei⁡(ix)+Ei⁡(-ix)){\ displaystyle \ operatorname {Ci} (x) = {\ frac {1} {2}} \ left (\ operatorname {Ei} (ix) + \ operatorname {Ei} (-ix) \ right)} {\ displaystyle \ operatorname {Ci} (x) = {\ frac {1} {2}} \ left (\ operatorname {Ei} (ix) + \ operatorname {Ei} (-ix) \ right)}

The integral cosine was introduced by Lorenzo Mascheroni in 1790 .

Content

Properties

  • The integral cosine can be represented as a series:
Ci⁡(x)=γ+ln⁡x-x22⋅2!+xfourfour⋅four!-x66⋅6!+⋯=γ+ln⁡x+∑n=one∞(-one)nx2n(2n)!(2n){\ displaystyle \ operatorname {Ci} (x) = \ gamma + \ ln x - {\ frac {x ^ {2}} {2 \ cdot 2!}} + {\ frac {x ^ {4}} {4 \ cdot 4!}} - {\ frac {x ^ {6}} {6 \ cdot 6!}} + \ cdots = \ gamma + \ ln x + \ sum _ {n = 1} ^ {\ infty} {\ frac {(-1) ^ {n} x ^ {2n}} {(2n)! (2n)}}}  


See also

  • Integral sine
  • Integral exponential function
  • Integral Logarithm

Notes

  1. ↑ Korn G., Korn T. Handbook of mathematics for scientists and engineers. // M .: Nauka, 1968 .-- p. 625
  2. ↑ Beitman G., Erdeyi A. Higher transcendental functions, vol. 2 // M .: Nauka, 1974. - p. 149

Literature

  • Mathematical Encyclopedic Dictionary, M. 1995, p. 238
  • Weisstein, Eric W. Cosine Integral on the Wolfram MathWorld website.
Source - https://ru.wikipedia.org/w/index.php?title=Cosine Integral&oldid = 82917086


More articles:

  • Gochadinsky Village Council
  • Teterovets (Grodno region)
  • San Jose Sharks Seasons List
  • Spiroseris
  • Levin, Evgeny Ilyich
  • Crane, Mark G.
  • Deir Mar Marun
  • Bulatnikovskiy rural district
  • Korolev, Vladimir Petrovich
  • Trunk

All articles

Clever Geek | 2019