Clever Geek Handbook
📜 ⬆️ ⬇️

Definite integral

A definite integral is an additive monotone functional defined on a set of pairs, the first component of which is an integrable function or functional , and the second is a domain in the set of the task of this function (functional) [1] .

Content

Definition

Let bef(x) {\ displaystyle f (x)}   defined on the segment[a;b] {\ displaystyle [a; b]}   . We will break[a;b] {\ displaystyle [a; b]}   to pieces by several arbitrary points:a=x0<xone<x2<...<xn=b {\ displaystyle a = x_ {0} <x_ {1} <x_ {2} <\ ldots <x_ {n} = b}   .

Then they say that the partition is doneR {\ displaystyle R}   segment[a;b]. {\ displaystyle [a; b].}   Next, choose an arbitrary pointξi∈[xi;xi+one] {\ displaystyle \ xi _ {i} \ in [x_ {i}; x_ {i + 1}]}   ,i=0,n-one¯ {\ displaystyle i = {\ overline {0, n-1}}}   .

A definite integral of a functionf(x) {\ displaystyle f (x)}   on the segment[a;b] {\ displaystyle [a; b]}   the limit of integral sums is called

partitions to zeroλR→0 {\ displaystyle \ lambda _ {R} \ rightarrow 0}   if it exists independently of the partitionR {\ displaystyle R}   and select pointsξi {\ displaystyle \ xi _ {i}}   , i.e

∫abf(x)dx=limΔx→0∑i=0n-onef(ξi)Δxi{\ displaystyle \ int \ limits _ {a} ^ {b} f (x) dx = \ lim \ limits _ {\ Delta x \ rightarrow 0} \ sum \ limits _ {i = 0} ^ {n-1} f (\ xi _ {i}) \ Delta x_ {i}}  

If the specified limit exists, then the functionf(x) {\ displaystyle f (x)}   called integrable on[a;b] {\ displaystyle [a; b]}   according to Riemann.

Conventions

∫abf(x)dx{\ displaystyle \ int \ limits _ {a} ^ {b} f (x) dx}  

  • a{\ displaystyle a}   - lower limit.
  • b{\ displaystyle b}   - upper limit.
  • f(x){\ displaystyle f (x)}   - integrand function.
  • Δxi{\ displaystyle \ Delta x_ {i}}   - the length of the partial segment.
  • σR{\ displaystyle \ sigma _ {R}}   - integral sum of functionf(x) {\ displaystyle f (x)}   on[a;b] {\ displaystyle [a; b]}   corresponding to the partitionR {\ displaystyle R}   .
  • λR=supΔxi{\ displaystyle \ lambda _ {R} = \ sup {\ Delta x_ {i}}}   - the maximum of the lengths of partial segments.

Properties

If the functionf(x) {\ displaystyle f (x)}   Riemann integrable on[a;b] {\ displaystyle [a; b]}   then it is limited to it.

Geometric meaning

 
Defined integral as the area of ​​a figure

Definite integral∫abf(x)dx {\ displaystyle \ int \ limits _ {a} ^ {b} f (x) \, dx}   numerically equal to the area of ​​the figure bounded by the abscissa axis, straightx=a {\ displaystyle x = a}   andx=b {\ displaystyle x = b}   and schedule functionsf(x) {\ displaystyle f (x)}   .

Calculation Examples

The following are examples of taking certain integrals using the Newton - Leibniz formula .

  1. ∫eight9x2dx=x33|eight9=7293-5123=2173=72,(3)≈72,3{\ displaystyle \ int \ limits _ {8} ^ {9} x ^ {2} \, dx = {\ frac {x ^ {3}} {3}} {\ Big |} _ {8} ^ {9 } = {\ frac {729} {3}} - {\ frac {512} {3}} = {\ frac {217} {3}} = 72 {,} (3) \ approx 72 {,} 3}  
  2. ∫onebdxx=ln⁡x|oneb=ln⁡b{\ displaystyle \ int \ limits _ {1} ^ {b} {\ frac {dx} {x}} = \ ln x {\ Big |} _ {1} ^ {b} = \ ln b}  
  3. ∫onefour2dxx=2ln⁡x|onefour≈2,eight{\ displaystyle \ int \ limits _ {1} ^ {4} {\ frac {2dx} {x}} = 2 \ ln x {\ Big |} _ {1} ^ {4} \ approx 2 {,} 8 }  

Notes

  1. ↑ Great Russian Encyclopedia : [in 35 vols.] / Ch. ed. Yu.S. Osipov . - M .: Great Russian Encyclopedia, 2004—2017.

Literature

  • Integral - an article from the Great Soviet Encyclopedia .
Source - https://ru.wikipedia.org/w/index.php?title=Defined_Integral&oldid=97098775


More articles:

  • Ring (album)
  • Rhode Trichrome
  • Fevre de Saint-Memen Charles Balthazar Julien
  • Induno, Girolamo
  • Mersenne (Moon Crater)
  • Svisloch (tributary of the Neman)
  • Krivoshein, Dmitry Alexandrovich
  • Kanner, Yuri Isaakovich
  • Surround Yourself with Cilla
  • Dragon's Mouth

All articles

Clever Geek | 2019