Clever Geek Handbook
📜 ⬆️ ⬇️

Trident lemma

The trident lemma , also called the trefoil lemma and the Mansion lemma , is a theorem in the geometry of a triangle related to the properties of inscribed , out-inscribed and circumscribed circles of a triangle.

The trident lemma is used as an auxiliary statement in the proof of many theorems, in particular, the Euler formula or the proof of the existence of the Euler circle .

The name "Mansion's lemma" is in honor of the French mathematician Paul Mansion .

Wording

Trident lemma.
Shamrock Lemma.
Mansion's lemma.

Let in a triangleABC {\ displaystyle ABC} ABC pointI {\ displaystyle I} I - center of the inscribed circle , pointIa {\ displaystyle I_ {a}} I_{a} Is the center of the incircle opposite the vertexA {\ displaystyle A} A , and the pointL {\ displaystyle L} L - point of intersection of the segmentIIa {\ displaystyle II_ {a}} {\displaystyle II_{a}} with an arc of a circumscribed circle (see right). Then the pointL {\ displaystyle L} L equidistant fromI {\ displaystyle I} I ,Ia {\ displaystyle I_ {a}} I_{a} ,B {\ displaystyle B} B andC {\ displaystyle C} C .

Particular variants of this statement have different names.

  • Manson's theorem [1] :L {\ displaystyle L} L equidistant fromI {\ displaystyle I} I andIa {\ displaystyle I_ {a}} I_{a} .
  • Shamrock Lemma , or the trident lemma [2] , or the Mansion lemma [3] :L {\ displaystyle L} L equidistant fromI {\ displaystyle I} I ,B {\ displaystyle B} B andC {\ displaystyle C} C .
  • Trident lemma [4] :L {\ displaystyle L} L equidistant fromI {\ displaystyle I} I ,Ia {\ displaystyle I_ {a}} I_{a} ,B {\ displaystyle B} B andC {\ displaystyle C} C .

Another option for setting the pointL {\ displaystyle L} L - as the center of the arcBC {\ displaystyle BC} BC circumscribed circle not containing a pointA {\ displaystyle A} A [3] .

Proof

Вики лемма о трезубце 777.png

Under∠A,∠B {\ displaystyle \ angle A, \ angle B} {\displaystyle \angle A,\angle B} we will understand the angles∠BAC,∠ABC {\ displaystyle \ angle BAC, \ angle ABC} {\displaystyle \angle BAC,\angle ABC} respectively. If the beamAI {\ displaystyle AI} {\displaystyle AI} intersects the circumscribed circle at the pointL {\ displaystyle L}   thenL {\ displaystyle L}   is the midpoint of the arcBC {\ displaystyle BC}   , sectionAL {\ displaystyle AL}   is the angle bisector∠A {\ displaystyle \ angle A}   . Having drawn a cutBI {\ displaystyle BI}   , notice, that

∠BIL=∠A/2+∠B/2,{\ displaystyle \ angle BIL = \ angle A / 2 + \ angle B / 2,}  

because∠BIL {\ displaystyle \ angle BIL}   external to the triangle△AIB {\ displaystyle \ triangle AIB}   , and

∠LBI=∠LBC+∠CBI=∠A/2+∠B/2,{\ displaystyle \ angle LBI = \ angle LBC + \ angle CBI = \ angle A / 2 + \ angle B / 2,}   because∠LBC {\ displaystyle \ angle LBC}   and∠LAC=∠A/2 {\ displaystyle \ angle LAC = \ angle A / 2}   are equal, as they rely on one arcLC {\ displaystyle LC}   .

Means triangle△BLI {\ displaystyle \ triangle BLI}   isosceles, i.e.BL=LI. {\ displaystyle BL = LI.}   EqualityCL=BL {\ displaystyle CL = BL}   follows from the fact that the same angle is based on both of these chords∠A/2. {\ displaystyle \ angle A / 2.}   In this way,BL=LI=LC. {\ displaystyle BL = LI = LC.}  

 

We have shown thatBL=LI=LC {\ displaystyle BL = LI = LC}   . Now we prove that the "handle" of the tridentLIa {\ displaystyle LI_ {a}}   equal to the same value.

Extend the sideAB {\ displaystyle AB}   per pointB {\ displaystyle B}   and take a point somewhere on this continuationE {\ displaystyle E}   . Under∠A {\ displaystyle \ angle A}   will understand∠BAC, {\ displaystyle \ angle BAC,}   under∠B {\ displaystyle \ angle B}   we will mean the angle∠EBC=180∘-∠ABC. {\ displaystyle \ angle EBC = 180 ^ {\ circ} - \ angle ABC.}  

Then we need to understand that the triangle△BLIa {\ displaystyle \ triangle BLI_ {a}}   isosceles, that is, that∠LBIa=∠LIaB {\ displaystyle \ angle LBI_ {a} = \ angle LI_ {a} B}   .

One side,

∠LBIa=∠B/2-∠A/2{\ displaystyle \ angle LBI_ {a} = \ angle B / 2- \ angle A / 2}  

and

∠EBIa=∠A/2+∠BIaA{\ displaystyle \ angle EBI_ {a} = \ angle A / 2 + \ angle BI_ {a} A}   because∠EBIa {\ displaystyle \ angle EBI_ {a}}   outer in triangle:△BIaA, {\ displaystyle \ triangle BI_ {a} A,}   those,∠B/2-∠A/2=∠BIaA {\ displaystyle \ angle B / 2- \ angle A / 2 = \ angle BI_ {a} A}  

Variations and generalizations

 
The external trident lemma
  • Trident lemma for two centers of incircle circles (“external” trident lemma)

Euler Circle Relationship

Through the trident lemma, one can gracefully prove the Euler circle .

Consider an acute-angled triangle ABC. Note that quadranglesAHcHHb {\ displaystyle AH_ {c} HH_ {b}}   ,BHcHHa {\ displaystyle BH_ {c} HH_ {a}}   ,HbHHaC {\ displaystyle H_ {b} HH_ {a} C}   inscribed (Fig. 1). Therefore, the angles are equal∡HHbHc=∡HAHc=∡HCHa=∡HHbHa {\ displaystyle \ measuredangle HH_ {b} H_ {c} = \ measuredangle HAH_ {c} = \ measuredangle HCH_ {a} = \ measuredangle HH_ {b} H_ {a}}   (pic 2).

 
picture 1
 
figure 2

It follows thatHbH {\ displaystyle H_ {b} H}   - bisector in a triangle△HcHbHa {\ displaystyle \ triangle H_ {c} H_ {b} H_ {a}}   . For completely similar reasonsHaH {\ displaystyle H_ {a} H}   andHcH {\ displaystyle H_ {c} H}   also bisectors in this triangle (Fig. 3). You may also notice thatAB, {\ displaystyle AB,}  BC, {\ displaystyle BC,}  CA {\ displaystyle CA}   - external bisectors to the triangle△HcHbHa {\ displaystyle \ triangle H_ {c} H_ {b} H_ {a}}   (because each of them is perpendicular to its internal bisector). Therefore, we can apply the trident lemma three times, for each side (Fig. 4).

 
figure 3
 
figure 4

From this we get that the midpoints of the segmentsHA,HB,HC {\ displaystyle HA, HB, HC}   lie on the circle described near the orthogon . Now we apply the external trident lemma three times (Fig. 5).

 
figure 5

We get that midpointsAB,BC,CA {\ displaystyle AB, BC, CA}   lie on the circle described near the orthogon.

Note

In order to prove the Euler circle for an obtuse triangleABC {\ displaystyle ABC}   with an obtuse angleA {\ displaystyle A}   , just consider the acute-angled triangleBCH {\ displaystyle BCH}   with orthocenterA {\ displaystyle A}   , and apply the same reasoning to it.

See also

  • Euler's formula
  • Manson's theorem
  • Inscribed circle
  • Inscribed circle
  • Center
  • Circle
  • Circumscribed circle
  • Johnson configuration
  • Fuss theorem

Notes

  1. ↑ Problem 52395 // "The system of problems in geometry of R. K. Gordin"
  2. ↑ Hakobyan A.V. Geometry in pictures .
  3. ↑ 1 2 Emelyanov L.A. Schiffler's point: in memory of I.F. Sharygin . - Mathematics at school, 2006. - No. 6 . - S. 58-60 . - ISSN 0130-9358 .
  4. ↑ R.N. Karasev. Problems for the school mathematical circle / R. N. Karasev, V. L. Dolnikov, I. I. Bogdanov, A. V. Akopyan. - S. 4.
Source - https://ru.wikipedia.org/w/index.php?title= Trident Lemma&oldid = 100146269


More articles:

  • Homeworld: Cataclysm
  • List of flag bearers of Poland at the Olympics
  • Sphecius uljanini
  • Sphecius antennatus
  • Evening News
  • Rostislav Rogvolodovich
  • Bubnov, Sergey Fedorovich
  • El Monte (California)
  • Archimetabolism
  • Mullner, Adolf

All articles

Clever Geek | 2019