Clever Geek Handbook
📜 ⬆️ ⬇️

Toric knot

(3,7) -toric knot.
EureleA prize in the form of a (2,3) -toric knot.
(2.8) -toric gearing

Toric knot - a special kind of knots lying on the surface of an unknotted torus inR3 {\ displaystyle \ mathbb {R} ^ {3}} \ mathbb {R} ^ {3} .

Toric gearing - gearing lying on the surface of a torus. Each toric knot is defined by a pair of mutually prime integersp {\ displaystyle p} p andq {\ displaystyle q} q . Toric gearing occurs whenp {\ displaystyle p} p andq {\ displaystyle q} q are not coprime (in this case, the number of components is equal to the largest common factorp {\ displaystyle p} p andq {\ displaystyle q} q ) A torus knot is trivial if and only if eitherp {\ displaystyle p} p eitherq {\ displaystyle q} q equal to 1 or −1. The simplest non-trivial example is the (2,3) -toric knot, also known as the trefoil .

(2, −3) -toric knot, also known as left trefoil

Content

Geometric View

A toric knot can be represented in geometrically different ways, topologically equivalent, but geometrically different.

A commonly used convention is that(p,q) {\ displaystyle (p, q)}   Torus knot rotatesq {\ displaystyle q}   times around the circular axis of the torus andp {\ displaystyle p}   times around the axis of rotation of the torus. If ap {\ displaystyle p}   andq {\ displaystyle q}   are not mutually simple, then we obtain a toric gearing having more than one component. Agreements on the direction in which the threads rotate around the torus are also different, most often the right screw forpq>0 {\ displaystyle pq> 0}   [1] [2] [3] .

(p,q){\ displaystyle (p, q)}   torus node can be specified by :

x=r{\ displaystyle x = r}  cos⁡(pϕ) {\ displaystyle \ cos (p \ phi)}   ,
y=r{\ displaystyle y = r}  sin⁡(pϕ) {\ displaystyle \ sin (p \ phi)}   ,
z=-sin⁡(qϕ){\ displaystyle z = - \ sin (q \ phi)}   ,

Wherer=cos⁡(qϕ)+2 {\ displaystyle r = \ cos (q \ phi) +2}   and0<ϕ<2π {\ displaystyle 0 <\ phi <2 \ pi}   . It lies on the surface of the torus given by the formula(r-2)2+z2=one {\ displaystyle (r-2) ^ {2} + z ^ {2} = 1}   (in cylindrical coordinates ).

Other parameterizations are also possible, since the nodes are determined up to a continuous deformation. Examples for (2,3) - and (3,8) -toric knots can be obtained by acceptingr=cos⁡(qϕ)+four {\ displaystyle r = \ cos (q \ phi) +4}   , and in the case of a (2,3) -toric knot by subtraction3cos⁡((p-q)ϕ) {\ displaystyle 3 \ cos ((pq) \ phi)}   and3sin⁡((p-q)ϕ) {\ displaystyle 3 \ sin ((pq) \ phi)}   from the above parameterizationsx {\ displaystyle x}   andy {\ displaystyle y}   .

Properties

 
Diagram of a (3, −8) -toric knot.

A torus knot is trivial if and only if eitherp {\ displaystyle p}   eitherq {\ displaystyle q}   equal to 1 or −1 [2] [3] .

Each nontrivial toric knot is simple and chiral .

(p,q){\ displaystyle (p, q)}   the torus knot is equivalent(q,p) {\ displaystyle (q, p)}   -toric node [1] [3] .(p,-q) {\ displaystyle (p, -q)}   torus node is the inverse (mirror reflection)(p,q) {\ displaystyle (p, q)}   torus node [3] .(-p,-q) {\ displaystyle (-p, -q)}   the torus knot is equivalent(p,q) {\ displaystyle (p, q)}   Torus node, except for orientation.

 
(3, 4) a toric knot on a turn of the surface of a torus and the word braids

Any(p,q) {\ displaystyle (p, q)}   torus node can be constructed from a closed braid withp {\ displaystyle p}   threads. Suitable braid word [4] :

(σoneσ2⋯σp-one)q{\ displaystyle (\ sigma _ {1} \ sigma _ {2} \ cdots \ sigma _ {p-1}) ^ {q}}   .

This formula uses the convention that braid generators use right-handed rotations [2] [4] [5] [6] .

Number of intersections(p,q) {\ displaystyle (p, q)}   Torus node withp,q>0 {\ displaystyle p, q> 0}   is given by the formula:

c=min((p-one)q,(q-one)p){\ displaystyle c = \ min ((p-1) q, (q-1) p)}   .

The genus of a toric knot withp,q>0 {\ displaystyle p, q> 0}   is equal to:

g=one2(p-one)(q-one).{\ displaystyle g = {\ frac {1} {2}} (p-1) (q-1).}  

The Alexander polynomial of the torus knot is [1] [4] :

(tpq-one)(t-one)(tp-one)(tq-one){\ displaystyle {\ frac {(t ^ {pq} -1) (t-1)} {(t ^ {p} -1) (t ^ {q} -1)}}}   .

The Jones polynomial (right-handed) of a toric knot is given by the formula:

t(p-one)(q-one)/2one-tp+one-tq+one+tp+qone-t2{\ displaystyle t ^ {(p-1) (q-1) / 2} {\ frac {1-t ^ {p + 1} -t ^ {q + 1} + t ^ {p + q}} { 1-t ^ {2}}}}   .

The complement of a toric knot on a 3-sphere is a Seifert manifold .

Let beY {\ displaystyle Y}   -p {\ displaystyle p}   -dimensional with a disk removed inside,Z {\ displaystyle Z}   -q {\ displaystyle q}   a stupid dimensional hood with an internal remote drive, andX {\ displaystyle X}   - factor space obtained by identificationY {\ displaystyle Y}   andZ {\ displaystyle Z}   along the boundary of the circle. Addition(p,q) {\ displaystyle (p, q)}   - toric knot is a deformation retract of spaceX {\ displaystyle X}   . Thus, the torus knot node group has the representation :

⟨x,y∣xp=yq⟩{\ displaystyle \ langle x, y \ mid x ^ {p} = y ^ {q} \ rangle}   .

Toric knots are the only knots whose knot groups have nontrivial centers (which are infinite cyclic groups formed by an elementxp=yq {\ displaystyle x ^ {p} = y ^ {q}}   from this view).

List

  • Trivial knot , 3 1- knot (2,3), Knot "Noblet" (5,2), (7,2), 8 19- knot (4,3), 9 1- knot ( 9.2), 10 124 -unit (5.3).

See also

  • Alternate node
  • Node "Cinquefoil"

Notes

  1. ↑ 1 2 3 Livingston, 1993 .
  2. ↑ 1 2 3 Murasugi, 1996 .
  3. ↑ 1 2 3 4 Kawauchi, 1996 .
  4. ↑ 1 2 3 Lickorish, 1997 .
  5. ↑ Dehornoy, P. et al. (2000). Why are braids orderable? http://www.math.unicaen.fr/~dehornoy/Books/Why/Dgr.pdf Archived April 15, 2012 on the Wayback Machine
  6. ↑ Birman, Brendle, 2005 .

Literature

  • Charles Livingston Knot theory. - Mathematical Association of America, 1993. - ISBN 0-88385-027-3 .
  • Kunio Murasugi. Knot theory and its applications. - Birkhäuser, 1996. - ISBN 3-7643-3817-2 .
  • Akio Kawauchi. A survey of knot theory. - Birkhäuser, 1996. - ISBN 3-7643-5124-1 .
  • WBR Lickorish. An introduction to knot theory. - Springer, 1997 .-- ISBN 0-387-98254-X .
  • JS Birman, TE Brendle. Handbook of knot theory / W. Menasco, M. Thistlethwaite. - Elsevier, 2005. - ISBN 0-444-51452-X ..
  • J. Milnor. Singular Points of Complex Hypersurfaces. - Princeton University Press, 1968. - ISBN 0-691-08065-8 .

Links

  • 36 Torus Knots , The Knot Atlas.
  • Weisstein, Eric W. Torus Knot ( Wolfram ) at Wolfram MathWorld .
  • Torus knot renderer in Actionscript
  • Fun with the PQ-Torus Knot
Source - https://ru.wikipedia.org/w/index.php?title=Toric_node&oldid=100524348


More articles:

  • Morpheus (ZRK)
  • Vest (commune)
  • Glass Ballerina
  • Temple of the Jerusalem Icon of the Mother of God behind the Intercession Gate
  • Babaev, Alexander Anatolyevich
  • Chevak (Alaska)
  • Volleyball at the 2015 European Games
  • Wooden Toy
  • Ivliev, Dmitry Ivanovich
  • Shell, Donald

All articles

Clever Geek | 2019