Clever Geek Handbook
📜 ⬆️ ⬇️

Cyclic polyhedron

A cyclic polyhedron is a convex polyhedron whose vertices lie on a curvet↦(t,t2,...,td) {\ displaystyle t \ mapsto (t, t ^ {2}, \ dots, t ^ {d})} t \ mapsto (t, t ^ {2}, \ dots, t ^ {d}) atRd {\ displaystyle \ mathbb {R} ^ {d}} \ mathbb {R} ^ {d} .

Design

Let bex(t)=(t,t2,...,td)∈Rd {\ displaystyle \ mathbf {x} (t) = (t, t ^ {2}, \ dots, t ^ {d}) \ in \ mathbb {R} ^ {d}}   andtone<t2<⋯<tn {\ displaystyle t_ {1} <t_ {2} <\ dots <t_ {n}}   . Convex hulln {\ displaystyle n}   pointsx(tone),x(t2),...,x(tn) {\ displaystyle \ mathbf {x} (t_ {1}), \ mathbf {x} (t_ {2}), \ ldots, \ mathbf {x} (t_ {n})}   calledd {\ displaystyle d}   -dimensional cyclic polyhedron withn {\ displaystyle n}   vertices and further denotedC(n,d) {\ displaystyle C (n, d)}   .

Properties

  • Gale Criterion: LetT={tone,t2,...,tn} {\ displaystyle T = \ {t_ {1}, t_ {2}, \ dots, t_ {n} \}}   , andTd⊂T {\ displaystyle T_ {d} \ subset T}   - a subset ofd {\ displaystyle d}   elements. Hyperface inC(n,d) {\ displaystyle C (n, d)}   corresponds toTd {\ displaystyle T_ {d}}   if and only if between any two adjacent numbers inTd {\ displaystyle T_ {d}}   lies an even number of numbers fromT {\ displaystyle T}   .
  • Any⌊d2⌋ {\ displaystyle \ lfloor {\ tfrac {d} {2}} \ rfloor}   peaks inC(n,d) {\ displaystyle C (n, d)}   form a face.
    • In particular, any two vertices of a 4-dimensional cyclic polyhedron are connected by an edge.
  • Numberi {\ displaystyle i}   -dimensional faces inC(n,d) {\ displaystyle C (n, d)}   at0≤i<⌊d2⌋ {\ displaystyle 0 \ leq i <\ lfloor {\ frac {d} {2}} \ rfloor}   equally(ni+one) {\ displaystyle {\ binom {n} {i + 1}}}   .
    • Using the Dehn - Somerville identities , one can find the number of faces of higher dimensions.
    • For anyonek {\ displaystyle k}   among alld {\ displaystyle d}   -dimensional polyhedra withn {\ displaystyle n}   vertices cyclic polyhedra have a maximum numberk {\ displaystyle k}   -dimensional faces.

Literature

  • V.A. Timorin. Combinatorics of convex polyhedra . - MCCMO, 2002. - (Summer School "Contemporary Mathematics"). - ISBN 5-94057-024-0 .
Source - https://ru.wikipedia.org/w/index.php?title= Cyclical polyhedron&oldid = 84600430


More articles:

  • Markin, Sergey Ivanovich
  • Tomnatic
  • Oberheldrungen
  • Wustheuterode
  • Wittgendorf (Thuringia)
  • Miss Supernational 2009
  • Weissense (Thuringia)
  • Grossbreitenbach
  • Saint-Oran-Pui-Petit
  • Egetent

All articles

Clever Geek | 2019