Clever Geek Handbook
📜 ⬆️ ⬇️

Hugoniot Condition

The Hugoniot conditions are the conditions that must be satisfied on the discontinuity lines of the solutions of the equations of gas dynamics , as a consequence of the integral conservation laws .

Let bex=x(t)- {\ displaystyle x = x (t) -} {\ displaystyle x = x (t) -} the equation of one of the discontinuity lines of hydrodynamic quantities, which we will assume for the considered segmenttone⩽t⩽t2 {\ displaystyle t_ {1} \ leqslant t \ leqslant t_ {2}} {\ displaystyle t_ {1} \ leqslant t \ leqslant t_ {2}} continuous tangent

Let bef(x,t) {\ displaystyle f (x, t)} {\ displaystyle f (x, t)} suffers a break on the linex=x(t) {\ displaystyle x = x (t)} x = x (t) .
Denote:
fone(t)=f(x(t)-0,t);{\ displaystyle f_ {1} (t) = f (x (t) -0, t);} {\ displaystyle f_ {1} (t) = f (x (t) -0, t);}
f2(t)=f(x(t)+0,t);{\ displaystyle f_ {2} (t) = f (x (t) + 0, t);} {\ displaystyle f_ {2} (t) = f (x (t) + 0, t);}
[f]=f2(t)-fone(t){\ displaystyle [f] = f_ {2} (t) -f_ {1} (t)} {\ displaystyle [f] = f_ {2} (t) -f_ {1} (t)}

The integral conservation laws in Euler coordinates have the form
(one){∮C⁡ρxν⋅dx-ρuxν⋅dt=0,∮C⁡ρuxν⋅dx-(p+ρu2)xν⋅dt=-∮G⁡∮C⁡νpxν-one⋅dxdt,∮C⁡ρ(ε+u22)xν⋅dx-ρu(ε+pρ+u22)xν⋅dt=0.{\ displaystyle (1) {\ begin {cases} \ oint \ limits _ {C} \ rho x ^ {\ nu} \ cdot dx- \ rho ux ^ {\ nu} \ cdot dt = 0, \\\ oint \ limits _ {C} \ rho ux ^ {\ nu} \ cdot dx- (p + \ rho u ^ {2}) x ^ {\ nu} \ cdot dt = - \ oint \ limits _ {G} \ oint \ limits _ {C} \ nu px ^ {\ nu -1} \ cdot dxdt, \\\ oint \ limits _ {C} \ rho (\ varepsilon + {\ frac {u ^ {2}} {2}}) x ^ {\ nu} \ cdot dx- \ rho u (\ varepsilon + {\ frac {p} {\ rho}} + {\ frac {u ^ {2}} {2}}) x ^ {\ nu} \ cdot dt = 0. \ end {cases}}} {\ displaystyle (1) {\ begin {cases} \ oint \ limits _ {C} \ rho x ^ {\ nu} \ cdot dx- \ rho ux ^ {\ nu} \ cdot dt = 0, \\\ oint \ limits _ {C} \ rho ux ^ {\ nu} \ cdot dx- (p + \ rho u ^ {2}) x ^ {\ nu} \ cdot dt = - \ oint \ limits _ {G} \ oint \ limits _ {C} \ nu px ^ {\ nu -1} \ cdot dxdt, \\\ oint \ limits _ {C} \ rho (\ varepsilon + {\ frac {u ^ {2}} {2}}) x ^ {\ nu} \ cdot dx- \ rho u (\ varepsilon + {\ frac {p} {\ rho}} + {\ frac {u ^ {2}} {2}}) x ^ {\ nu} \ cdot dt = 0. \ end {cases}}}

We write the conservation laws (2) for the circuit AA 'BB' , assuming that the lines A'B and B'A of circuit C , as well as the double integral∮G⁡∮C⁡νpxν-one⋅dxdt {\ displaystyle \ oint \ limits _ {G} \ oint \ limits _ {C} \ nu px ^ {\ nu -1} \ cdot dxdt} {\ displaystyle \ oint \ limits _ {G} \ oint \ limits _ {C} \ nu px ^ {\ nu -1} \ cdot dxdt} . Along the linex=x(t) {\ displaystyle x = x (t)} x = x (t) we havedx=Ddt {\ displaystyle dx = Ddt} {\ displaystyle dx = Ddt} whereD=D(t)=x′(t) {\ displaystyle D = D (t) = x ^ {\ prime} (t)} {\ displaystyle D = D (t) = x ^ {\ prime} (t)} .
Therefore, for example, from the first equation of (1) , we obtain
∫tonet2xν{(ρ2(t)-ρone(t))D(t)-(ρ2(t)u2(t)-ρone(t)uone(t))}⋅dx=0{\ displaystyle \ int \ limits _ {t_ {1}} ^ {t_ {2}} x ^ {\ nu} \ left \ {(\ rho _ {2} (t) - \ rho _ {1} (t )) D (t) - (\ rho _ {2} (t) u_ {2} (t) - \ rho _ {1} (t) u_ {1} (t)) \ right \} \ cdot dx = 0} {\ displaystyle \ int \ limits _ {t_ {1}} ^ {t_ {2}} x ^ {\ nu} \ left \ {(\ rho _ {2} (t) - \ rho _ {1} (t )) D (t) - (\ rho _ {2} (t) u_ {2} (t) - \ rho _ {1} (t) u_ {1} (t)) \ right \} \ cdot dx = 0},(2) {\ displaystyle, (2)} {\ displaystyle, (2)}
Due to the arbitrariness of the integration limits in (2) , the integrand must be equal to zero i.e.xν(t){D(t)[ρ]-[ρu]}=0 {\ displaystyle x ^ {\ nu} (t) \ left \ {D (t) [\ rho] - [\ rho u] \ right \} = 0} {\ displaystyle x ^ {\ nu} (t) \ left \ {D (t) [\ rho] - [\ rho u] \ right \} = 0} .

Reducing Equality byxν {\ displaystyle x ^ {\ nu}} {\ displaystyle x ^ {\ nu}} , we see that the conditions on the discontinuity line are the same for the three cases of symmetryν=0,one,2 {\ displaystyle \ nu = 0,1,2} {\ displaystyle \ nu = 0,1,2} .
Acting in a similar way with all conservation laws (1) , we obtain conditions on the discontinuity linex=x(t) {\ displaystyle x = x (t)} x = x (t)

D[ρ ] = [ ρ u ] ,{\ displaystyle D [\ rho] = [\ rho u],} {\ displaystyle D [\ rho] = [\ rho u],}

D[ρu]=[p+ρu2],{\ displaystyle D [\ rho u] = [p + \ rho u ^ {2}],} {\ displaystyle D [\ rho u] = [p + \ rho u ^ {2}],}

D[ρ(ε+u22)]=[ρu(ε+pρ+u22)]{\ displaystyle D [\ rho (\ varepsilon + {\ frac {u ^ {2}} {2}})] = [\ rho u (\ varepsilon + {\ frac {p} {\ rho}} + {\ frac {u ^ {2}} {2}})}} {\ displaystyle D [\ rho (\ varepsilon + {\ frac {u ^ {2}} {2}})] = [\ rho u (\ varepsilon + {\ frac {p} {\ rho}} + {\ frac {u ^ {2}} {2}})}}

which connect jumps of hydrodynamic quantities on the discontinuity linex=x(t) {\ displaystyle x = x (t)} x = x (t) and speedD=x′(t) {\ displaystyle D = x ^ {\ prime} (t)} {\ displaystyle D = x ^ {\ prime} (t)} break lines.
The latter relations are called the conditions of hydrodynamic compatibility of the gap or the Hugoniot conditions .

Source - https://ru.wikipedia.org/w/index.php?title=Gugonio_condition&oldid=83817621


More articles:

  • Biologically Important Elements
  • Abikeev, Sartbay Abikeevich
  • Osterman, Wilhelm
  • Novopodzornovsky rural settlement
  • Class Discrimination
  • Bone Garden
  • Untermeitingen
  • Lax, Martins
  • Nandlstadt
  • Scottish Football Championship 1911/1912

All articles

Clever Geek | 2019