Clever Geek Handbook
📜 ⬆️ ⬇️

Coordinate space

All physical phenomena can be described in different spaces: coordinate, pulsed , phase , etc. Descriptions are mathematically equivalent, but differ in the complexity and intuitiveness of the description. In most cases, the coordinate space is intuitive and the easiest to understand the process that takes place in it, however, in solid state physics it is generally more convenient to use an impulse description.

Content

  • 1 Definition
  • 2 Properties
  • 3 Operators in coordinate space
  • 4 See also
  • 5 notes
  • 6 Literature

Definition

Call [1]n {\ displaystyle n}   -dimensional vectorn {\ displaystyle n}   field numbersP, {\ displaystyle P,}   these numbers are the coordinates of the vectorr→=r→(rone,r2,...,rn). {\ displaystyle {\ vec {r}} = {\ vec {r}} (r_ {1}, r_ {2}, \ ldots, r_ {n}).}   For definiteness, they say that this vectorr→ {\ displaystyle {\ vec {r}}}   is a radius vector , although this is not necessary.

A bunch ofn {\ displaystyle n}   -dimensional vectors for which operations are defined:

  • a→=b→↔{aone=bonea2=b2...an=bn{\ displaystyle {\ vec {a}} = {\ vec {b}} \; \ leftrightarrow \; \ left \ {{\ begin {matrix} a_ {1} = b_ {1} \\ a_ {2} = b_ {2} \\\ ldots \\ a_ {n} = b_ {n} \ end {matrix}} \ right.}  
  • a→+b→=(aone+bone,a2+b2,...,an+bn){\ displaystyle {\ vec {a}} + {\ vec {b}} = (a_ {1} + b_ {1}, \; a_ {2} + b_ {2}, \ ldots, a_ {n} + b_ {n})}  
  • λ⋅a→=(λ⋅aone,λ⋅a2,...,λ⋅an){\ displaystyle \ lambda \ cdot {\ vec {a}} = (\ lambda \ cdot a_ {1}, \; \ lambda \ cdot a_ {2}, \ ldots, \ lambda \ cdot a_ {n})}  

are calledn- {\ displaystyle n-}   dimensional arithmetic space orn {\ displaystyle n}   -dimensional coordinate spacePn {\ displaystyle P ^ {n}}   .

Properties

Let be∃0→=(0,0,...,0),a→=(aone,a2,...,an),λ∈R,μ∈R {\ displaystyle \ exists {\ vec {0}} = (0,0, \ ldots, 0), {\ vec {a}} = (a_ {1}, a_ {2}, \ ldots, a_ {n} ), \ lambda \ in \ mathbb {R}, \ mu \ in \ mathbb {R}}  

  • Associativity :
(a→+b→)+c→=a→+(b→+c→){\ displaystyle ({\ vec {a}} + {\ vec {b}}) + {\ vec {c}} = {\ vec {a}} + ({\ vec {b}} + {\ vec { c}})}  
  • Commutativity :
a→+b→=b→+a→{\ displaystyle {\ vec {a}} + {\ vec {b}} = {\ vec {b}} + {\ vec {a}}}  
  • The uniqueness of the solution of the equation :
∀a→,b→∃!x→∈Pn:a→+x→=b→{\ displaystyle \ forall {\ vec {a}}, {\ vec {b}} \; \ exists! \; {\ vec {x}} \ in P ^ {n} \;: \; {\ vec { a}} + {\ vec {x}} = {\ vec {b}}}  
  • The existence of a neutral element :
∀a→:a→+0→=a→{\ displaystyle \ forall {\ vec {a}} \;: \; {\ vec {a}} + {\ vec {0}} = {\ vec {a}}}  
  • The existence of the opposite vector:
∀a→∃b→(bone=-aone,b2=-a2,...,bn=-an):a→+b→=0→{\ displaystyle \ forall {\ vec {a}} \; \ exists {\ vec {b}} (b_ {1} = - a_ {1}, \; b_ {2} = - a_ {2}, \ ldots , b_ {n} = - a_ {n}) \;: \; {\ vec {a}} + {\ vec {b}} = {\ vec {0}}}  
  • Scalar multiplication associativity:
∀λ,μ∈R:λ⋅(μ⋅a→)=(λ⋅μ)⋅a→{\ displaystyle \ forall \ lambda, \ mu \ in \ mathbb {R} \;: \; \ lambda \ cdot (\ mu \ cdot {\ vec {a}}) = (\ lambda \ cdot \ mu) \ cdot {\ vec {a}}}  
  • The distributivity of multiplication relative to the addition of scalars:
(λ+μ)⋅a→=λ⋅a→+μ⋅a→{\ displaystyle (\ lambda + \ mu) \ cdot {\ vec {a}} = \ lambda \ cdot {\ vec {a}} + \ mu \ cdot {\ vec {a}}}  
  • The distributivity of multiplication relative to the addition of vectors:
λ(a→+b→)=λ⋅a→+λ⋅b→{\ displaystyle \ lambda ({\ vec {a}} + {\ vec {b}}) = \ lambda \ cdot {\ vec {a}} + \ lambda \ cdot {\ vec {b}}}  
  • The existence of basis vectors:
Let be{vone→=vone→(one,0,...,0)v2→=v2→(0,one,...,0)⋮vn→=vn→(0,0,...,one) {\ displaystyle \ left \ {{\ begin {matrix} {\ vec {v_ {1}}} = {\ vec {v_ {1}}} (1,0, \ ldots, 0) \\ {\ vec { v_ {2}}} = {\ vec {v_ {2}}} (0,1, \ ldots, 0) \\\ vdots \\ {\ vec {v_ {n}}} = {\ vec {v_ { n}}} (0,0, \ ldots, 1) \ end {matrix}} \ right.}  
Then
  • These vectors are linearly independent
  • Any vectorv→=v→(vone,v2,...,vn) {\ displaystyle {\ vec {v}} = {\ vec {v}} (v_ {1}, v_ {2}, \ ldots, v_ {n})}   can be imagined asv→=vone⋅vone→+v2⋅v2→+...+vn⋅vn→ {\ displaystyle {\ vec {v}} = v_ {1} \ cdot {\ vec {v_ {1}}} + v_ {2} \ cdot {\ vec {v_ {2}}} + \ ldots + v_ { n} \ cdot {\ vec {v_ {n}}}}  

Operators in coordinate space

All operators can be generalized ton- {\ displaystyle n-}   dimensional case, however, for simplicity, only three-dimensional cases will be considered in this section.

  • Laplacian :
Δ=∂2∂x2+∂2∂y2+∂2∂z2{\ displaystyle \ Delta = {\ partial ^ {2} \ over \ partial x ^ {2}} + {\ partial ^ {2} \ over \ partial y ^ {2}} + {\ partial ^ {2} \ over \ partial z ^ {2}}}  
  • Nabla :
∇=∂∂xi→+∂∂yj→+∂∂zk→{\ displaystyle \ nabla = {\ partial \ over \ partial x} {\ vec {i}} + {\ partial \ over \ partial y} {\ vec {j}} + {\ partial \ over \ partial z} { \ vec {k}}}  
  • Laplace vector operator [2] :
Δ→A→=∇(∇⋅A→)-∇×(∇×A→){\ displaystyle {\ vec {\ Delta}} {\ vec {A}} = \ nabla (\ nabla \ cdot {\ vec {A}}) - \ nabla \ times (\ nabla \ times {\ vec {A} })}  
  • Impulse operator :
p^=-iℏ∇{\ displaystyle \ mathbf {\ hat {p}} = -i \ hbar \ nabla}  

See also

  • Impulse space
  • Phase space
  • Configuration space

Notes

  1. ↑ Alexandrov P. S. Lectures on analytic geometry. - M .: Nauka, 1968 .-- S. 154-155. - 912 p.
  2. ↑ Weisstein, Eric W. Vector Laplacian on the Wolfram MathWorld website.

Literature

Source - https://ru.wikipedia.org/w/index.php?title= Coordinate_space&oldid = 96461704


More articles:

  • Belozersky rural settlement (Chelyabinsk region)
  • Kosobrodskoye Rural Settlement
  • Novopesterevsky rural settlement
  • Zinghe Rural Settlement
  • Otto Art
  • Tröbitz
  • Baranova (Mistake rural settlement)
  • Poland Football Championship 1962/1963
  • Juma Mosque (Sheki)
  • Game of Thrones (Season 4)

All articles

Clever Geek | 2019