Clever Geek Handbook
📜 ⬆️ ⬇️

Coordinate representation (quantum mechanics)

Coordinate representation (quantum mechanics) is a representation of quantum mechanics operators in which the operators and the wave function depend on spatial coordinates. In this representation, the coordinate operator is diagonal.

Content

Schrödinger equation

In this representation, the Schrödinger equation has the form:

(-ℏ22m∇2+V(r))ψ=iℏ∂ψ∂t{\ displaystyle (- {\ frac {\ hbar ^ {2}} {2m}} \ nabla ^ {2} + V (r)) \ psi = i {\ hbar} {\ frac {\ partial \ psi} { \ partial t}}}  

- time dependent, and

(-ℏ22m∇2+V(r))ψ=Eψ{\ displaystyle (- {\ frac {\ hbar ^ {2}} {2m}} \ nabla ^ {2} + V (r)) \ psi = E \ psi}  

time-independent (everywhere r is the radius vector of the point where the wave function is taken).

Some operators in the coordinate representation

r{\ displaystyle r}   -coordinate;

-iℏ∂∂r{\ displaystyle -i {\ hbar} {\ frac {\ partial} {\ partial r}}}   - impulse ;

-ℏ22m∇2+V(r){\ displaystyle - {\ frac {\ hbar ^ {2}} {2m}} \ nabla ^ {2} + V (r)}   - Hamiltonian .

Link to other views

To go into impulse presentation, you need either

1) Solve the problem in the coordinate and go to the impulse using the superposition relation

ψ(p)=one2πℏ∫ψ(x)e-ipx/ℏdx{\ displaystyle \ psi (p) = {\ frac {1} {\ sqrt {2 \ pi {\ hbar}}} \ int \ psi (x) e ^ {- ipx / \ hbar} dx}  

PS The transition back to the coordinate representation can be written asψ(x)=one2πℏ∫ψ(p)eipx/ℏdp {\ displaystyle \ psi (x) = {\ frac {1} {\ sqrt {2 \ pi {\ hbar}}}} int \ psi (p) e ^ {ipx / \ hbar} dp}  

It is easy to see that this is the direct and inverse Fourier transforms . In three-dimensional space, the integral multiplier must be replaced byone(2πℏ)3 {\ displaystyle {\ frac {1} {\ sqrt {(2 \ pi \ hbar) ^ {3}}}}}  

2) Change the Hamiltonian toH^=p22m+V(iℏ∂∂p) {\ displaystyle {\ hat {H}} = {\ frac {p ^ {2}} {2m}} + V (i {\ hbar} {\ frac {\ partial} {\ partial p}})}   and solve a problem with him.

Literature

  • Tarasov L.V. Fundamentals of quantum mechanics. M.: Book House "LIBROCOM", 2014.


Source - https://ru.wikipedia.org/w/index.php?title=Coordinate_view_(quantum_mechanics)&oldid=97055808


More articles:

  • Krasnoyarovo (Amur Region)
  • Pivier, Theodore
  • Kazan, Nikolai Fedorovich
  • Muhammad Ali Al-Khusi
  • Sakharnov, Vasily Alekseevich
  • Baldo, Giuseppe
  • Wilhelmina Fitzclarence
  • Mkrtchyan, Ararat Egisheevich
  • Bindyuzhnik
  • Shimko, Maxim Nikolaevich

All articles

Clever Geek | 2019