Clever Geek Handbook
📜 ⬆️ ⬇️

Rees-Thorin Theorem

The Ries – Torin theorem is a statement about the properties of interpolation spaces . It was formulated in 1926 by Marcel Rees [1] , and was formulated and proved in operator form by Olof Torin in 1939 [2] [3] .

According to the theorem, for two spaces(Ωone,Σone,μone) {\ displaystyle (\ Omega _ {1}, \ Sigma _ {1}, \ mu _ {1})} (\ Omega _ {{1}}, \ Sigma _ {{1}}, \ mu _ {{1}}) and(Ω2,Σ2,μ2) {\ displaystyle (\ Omega _ {2}, \ Sigma _ {2}, \ mu _ {2})} (\ Omega _ {{2}}, \ Sigma _ {{2}}, \ mu _ {{2}}) with measuresμone {\ displaystyle \ mu _ {1}} \ mu _ {{1}} andμ2 {\ displaystyle \ mu _ {2}} \ mu _ {{2}} respectively, and two Banach spaces of complex-valued functionsLp(Ωi) {\ displaystyle L_ {p} (\ Omega _ {i})} L _ {{p}} (\ Omega _ {{i}}) summable withp {\ displaystyle p} p i degree(p⩾one) {\ displaystyle (p \ geqslant 1)} (p \ geqslant 1) by measureμi {\ displaystyle \ mu _ {i}} \ mu _ {{i}}(i=one,2) {\ displaystyle (i = 1,2)} (i = 1,2) , triple Banach spaces(Lp0(Ωone),Lpone(Ωone),Lp(Ωone)) {\ displaystyle (L_ {p_ {0}} (\ Omega _ {1}), L_ {p_ {1}} (\ Omega _ {1}), L_ {p} (\ Omega _ {1}))} (L _ {{p _ {{0}}}} (\ Omega _ {{1}}), L _ {{p _ {{1}}}} (\ Omega _ {{1}}), L _ {{p} } (\ Omega _ {{1}})) is a normal interpolation typeα {\ displaystyle \ alpha} \ alpha regarding troika(Lq0(Ω2),Lqone(Ω2),Lq(Ωone)) {\ displaystyle (L_ {q_ {0}} (\ Omega _ {2}), L_ {q_ {1}} (\ Omega _ {2}), L_ {q} (\ Omega _ {1}))} {\ displaystyle (L_ {q_ {0}} (\ Omega _ {2}), L_ {q_ {1}} (\ Omega _ {2}), L_ {q} (\ Omega _ {1}))} , if a:

onep=one-αp0+αpone{\ displaystyle {\ frac {1} {p}} = {\ frac {1- \ alpha} {p_ {0}}} + {\ frac {\ alpha} {p_ {1}}}} {\ displaystyle {\ frac {1} {p}} = {\ frac {1- \ alpha} {p_ {0}}} + {\ frac {\ alpha} {p_ {1}}}} andoneq=one-αq0+αqone {\ displaystyle {\ frac {1} {q}} = {\ frac {1- \ alpha} {q_ {0}}} + {\ frac {\ alpha} {q_ {1}}} {\ displaystyle {\ frac {1} {q}} = {\ frac {1- \ alpha} {q_ {0}}} + {\ frac {\ alpha} {q_ {1}}} ,

Where0⩽α⩽one {\ displaystyle 0 \ leqslant \ alpha \ leqslant 1} 0 \ leqslant \ alpha \ leqslant 1 [4] . (Three Banach spaces(A,B,E) {\ displaystyle (A, B, E)} (A, B, E) is an interpolation typeα {\ displaystyle \ alpha} \ alpha where0⩽α⩽one {\ displaystyle 0 \ leqslant \ alpha \ leqslant 1} 0 \ leqslant \ alpha \ leqslant 1 relative to troika(C,D,F) {\ displaystyle (C, D, F)} (C, D, F) if it is interpolational and the inequality holds‖T‖E→F⩽c‖T‖A→Cone-α‖T‖B→Dα {\ displaystyle \ | T \ | _ {E \ rightarrow F} \ leqslant c \ | T \ | _ {A \ rightarrow C} ^ {1- \ alpha} \ | T \ | _ {B \ rightarrow D} ^ {\ alpha}} \ | T \ | _ {{E \ rightarrow F}} \ leqslant c \ | T \ | _ {{A \ rightarrow C}} ^ {{1- \ alpha}} \ | T \ | _ {{B \ rightarrow D}} ^ {{\ alpha}} [5] .)

The proof of the theorem uses the theorem on three lines from the theory of analytic functions [6] .

Notes

  1. ↑ Riesz M., Sur les maxima des formes bilineares et sur les fonctionalles linearies, Acta Math., 49 (1926), 465-497
  2. ↑ Thorin GO, Anne of convexity Theorem Due to M. Riesz, Comm. Sem. Math Univ. Lund, 4 (1939), 1-5
  3. ↑ Thorin GO, Convexity theorems generalizing those of M. Riesz and Hadamard with some applications, Comm. Sem. Math Univ. Lund, 9 (1948), 1-58
  4. ↑ Crane, 1978 , p. 37.
  5. ↑ Crane, 1978 , p. 36
  6. ↑ Sigmund A. Trigonometric series, M., Mir, 1965, Vol. II, p. 144-148

Literature

  • Kerin S. G. , Petunin Yu. I. , Semenov E. M. Interpolation of linear operators. - M .: Science, 1978. - 400 p.
  • Berg J., Löfström J. Interpolation spaces. Introduction - M .: Mir, 1980. - 264 p.
Source - https://ru.wikipedia.org/w/index.php?title=Teorema_Risa_—_Torina&oldid=99498444


More articles:

  • Danish Hockey League
  • De Serre, Louis
  • Slovak First League
  • French Basketball Championship 2014/2015
  • Bazordan
  • Medal "For the Wounded" (Croatia)
  • Innoko (National Wildlife Reserve)
  • Vatican Music
  • Sagatelyan, Ivan Yakovlevich
  • Velentei

All articles

Clever Geek | 2019