Clever Geek Handbook
📜 ⬆️ ⬇️

Character (number theory)

A character (or a numerical character , or a Dirichlet character ) is a certain arithmetic function that arises from characters on reversible elementsZ/kZ {\ displaystyle \ mathbb {Z} / k \ mathbb {Z}} {\ displaystyle \ mathbb {Z} / k \ mathbb {Z}} . Dirichlet characters are used to determine Dirichlet L- functions , which are meromorphic functions with many interesting analytic properties. Ifχ {\ displaystyle \ chi} \ chi is a Dirichlet character; its L -Dirichlet series is defined by the equality

L(s,χ)=∑n=one∞χ(n)ns{\ displaystyle L (s, \ chi) = \ sum _ {n = 1} ^ {\ infty} {\ frac {\ chi (n)} {n ^ {s}}}} {\ displaystyle L (s, \ chi) = \ sum _ {n = 1} ^ {\ infty} {\ frac {\ chi (n)} {n ^ {s}}}}

where s is a complex number with the real part> 1. By analytic continuation, this function can be extended to a meromorphic function on the entire complex plane . Dirichlet L -functions are a generalization of the Riemann zeta function and are noticeably manifested in the generalized Riemann hypotheses .

The characters of Dirichlet are named after Peter Gustav Lejeune Dirichlet .

Content

  • 1 Axiomatic definition
  • 2 Construction through residue classes
    • 2.1 Deduction classes
    • 2.2 Dirichlet characters
  • 3 Examples
  • 4 Some character tables
    • 4.1 Modulo 1
    • 4.2 Modulo 2
    • 4.3 Modulo 3
    • 4.4 Modulo 4
    • 4.5 Modulo 5
    • 4.6 Modulo 6
    • 4.7 Modulo 7
    • 4.8 Modulo 8
    • 4.9 Modulo 9
    • 4.10 Modulo 10
  • 5 Examples
  • 6 Primitive characters and conductor
  • 7 Orthogonality of characters
  • 8 History
  • 9 See also
  • 10 notes
  • 11 Literature
  • 12 Literature

Axiomatic definition

Dirichlet character is any functionχ {\ displaystyle \ chi} \chi on a set of integersZ {\ displaystyle \ mathbb {Z}}   into complex numbersC {\ displaystyle \ mathbb {C}}   such thatχ {\ displaystyle \ chi} \chi has the following properties [1] :

  1. There is a positive integer k such thatχ(n)=χ(n+k) {\ displaystyle \ chi (n) = \ chi (n + k)}   for any n .
  2. If n and k are not coprime , thenχ(n)=0 {\ displaystyle \ chi (n) = 0}   ; if they are mutually simple,χ(n)≠0 {\ displaystyle \ chi (n) \ neq 0}   .
  3. χ(mn)=χ(m)χ(n){\ displaystyle \ chi (mn) = \ chi (m) \ chi (n)}   for any integers m and n .

Some other properties can be deduced from this definition. According to property 3)χ(one)=χ(one×one)=χ(one)χ(one) {\ displaystyle \ chi (1) = \ chi (1 \ times 1) = \ chi (1) \ chi (1)}   . Since GCD (1, k ) = 1, property 2) states thatχ(one)≠0 {\ displaystyle \ chi (1) \ neq 0}   , so that

  1. χ(one)=one{\ displaystyle \ chi (1) = 1}   .

Properties 3) and 4) show that any Dirichlet characterχ {\ displaystyle \ chi} \chi is character .

Property 1) says that the character is a periodic function with period k . We say thatχ {\ displaystyle \ chi} \chi is a character modulo k . This is equivalent to saying that

  1. ifa≡b(modk) {\ displaystyle a \ equiv b {\ pmod {k}}}   thenχ(a)=χ(b) {\ displaystyle \ chi (a) = \ chi (b)}   .

If GCD ( a , k ) = 1, Euler's theorem states thataφ(k)≡one(modk) {\ displaystyle a ^ {\ varphi (k)} \ equiv 1 {\ pmod {k}}}   (Whereφ(k) {\ displaystyle \ varphi (k)}   is a Euler function ). Thus, according to properties 5) and 4)χ(aφ(k))=χ(one)=one {\ displaystyle \ chi (a ^ {\ varphi (k)}) = \ chi (1) = 1}   , and by property 3)χ(aφ(k))=χ(a)φ(k) {\ displaystyle \ chi (a ^ {\ varphi (k)}) = \ chi (a) ^ {\ varphi (k)}}   . So we have

  1. For all a , coprime to k ,χ(a) {\ displaystyle \ chi (a)}   is anφ(k) {\ displaystyle \ varphi (k)}   complex root of unity ,

i.ee2riπ/φ(k) {\ displaystyle e ^ {2ri \ pi / \ varphi (k)}}   for some whole0⩽r<φ(k) {\ displaystyle 0 \ leqslant r <\ varphi (k)}   .

The only character with period 1 is called the trivial character . Note that any character becomes 0 at point 0, except for the trivial one, which is 1 for all integers.

  • A character assuming the value 1 on all numbers coprime tok {\ displaystyle k}   is called the main one :
    χ0(n)={one,GCD(n,k)=one;0,GCD(n,k)≠one.{\ displaystyle \ chi _ {0} (n) = \ left \ {{\ begin {array} {ll} 1, & {\ text {GCD}} (n, \; k) = 1; \\ 0, & {\ text {GCD}} (n, \; k) \ neq 1. \ end {array}} \ right.}   [2] .
    • In the group of characters modulok {\ displaystyle k}   he plays the role of unit.

A character is called real if it takes only real values. A character that is not real is called complex [3]

Character signχ {\ displaystyle \ chi}   depends on its value at the point −1. They say thatχ {\ displaystyle \ chi}   odd ifχ(-one)=-one {\ displaystyle \ chi (-1) = - 1}   , and even ifχ(-one)=one {\ displaystyle \ chi (-1) = 1}   .

Building through Deduction Classes

Dirichlet characters can be considered in terms of aZ/kZ {\ displaystyle \ mathbb {Z} / k \ mathbb {Z}}   as extended characters of residue classes [4] .

Deduction classes

Given an integer k , we can define the residue class of the integer n as the set of all integers comparable to n modulo k :n^={m∣m≡n(modk)}. {\ displaystyle {\ hat {n}} = \ {m \ mid m \ equiv n {\ pmod {k}} \}.}   That is a class of deductionsn^ {\ displaystyle {\ hat {n}}}   is the adjacency class n in the quotient ringZ/kZ {\ displaystyle \ mathbb {Z} / k \ mathbb {Z}}   .

The set of invertible elements modulo k forms an abelian group of orderφ(k) {\ displaystyle \ varphi (k)}   where the multiplication in the group is given by the equalitymn^=m^n^ {\ displaystyle {\ widehat {mn}} = {\ hat {m}} {\ hat {n}}}   , butφ {\ displaystyle \ varphi}   again means Euler function . The unit in this group is the deduction class.one^ {\ displaystyle {\ hat {1}}}   , and the inverse element form^ {\ displaystyle {\ hat {m}}}   is a deduction classn^ {\ displaystyle {\ hat {n}}}   wherem^n^=one^ {\ displaystyle {\ hat {m}} {\ hat {n}} = {\ hat {1}}}   , i.emn≡one(modk) {\ displaystyle mn \ equiv 1 {\ pmod {k}}}   . For example, for k = 6, the set of reversible elements is{one^,5^} {\ displaystyle \ {{\ hat {1}}, {\ hat {5}} \}}   , since 0, 2, 3, and 4 are not coprime with 6.

Character group(Z/k)∗ {\ displaystyle (\ mathbb {Z} / k) ^ {*}}   consists of characters of residue classes . The nature of the deduction classθ {\ displaystyle \ theta}   on(Z/k)∗ {\ displaystyle (\ mathbb {Z} / k) ^ {*}}   primitive if there is no proper divisor d for k such thatθ {\ displaystyle \ theta}   factorized as(Z/k)∗→(Z/d)∗→C∗ {\ displaystyle (\ mathbb {Z} / k) ^ {*} \ to (\ mathbb {Z} / d) ^ {*} \ to \ mathbb {C} ^ {*}}   [5] .

Dirichlet characters

Determining the Dirichlet character modulo k ensures that it is bounded by the group of invertible elements modulo k [6] : the group of homomorphismsχ {\ displaystyle \ chi}   of(Z/k)∗ {\ displaystyle (\ mathbb {Z} / k) ^ {*}}   into nonzero complex numbers

χ:(Z/kZ)∗→C∗{\ displaystyle \ chi: (\ mathbb {Z} / k \ mathbb {Z}) ^ {*} \ to \ mathbb {C} ^ {*}}   ,

with values ​​that will necessarily be roots of unity, since reversible elements modulo k form a finite group. In the opposite direction, if a group of homomorphisms is givenχ {\ displaystyle \ chi}   on a group of invertible elements modulo k , we can to a function on integers coprime to k , and then extend this function to all integers by assigning the value 0 on all integers having nontrivial divisors common with k . The resulting function will then be the Dirichlet character [7] .

Main characterχone {\ displaystyle \ chi _ {1}}   modulo k has the properties [7]

χone(n)=one{\ displaystyle \ chi _ {1} (n) = 1}   with GCD ( n , k ) = 1 and
χone(n)=0{\ displaystyle \ chi _ {1} (n) = 0}   for GCD ( n , k )> 1.

Associative nature of the multiplicative group(Z/k)∗ {\ displaystyle (\ mathbb {Z} / k) ^ {*}}   is the main character that always takes the value 1 [8] .

When k is 1, the main character modulo k is 1 on all integers. For k greater than 1, the main characters modulo k vanish in integers that have non-zero common factors with k , and is equal to 1 on other integers.

Is availableφ(n) {\ displaystyle \ varphi (n)}   Dirichlet characters modulo n [7] .


Examples

  • For any odd modulek {\ displaystyle k}   Jacobi symbol(nk) {\ displaystyle \ left ({\ frac {n} {k}} \ right)}   is a modulo characterk {\ displaystyle k}   .
  • A power-law deduction of a degree above 2 is a non-material character.

Some character tables

The tables below help illustrate the nature of Dirichlet characters. They represent characters modulo 1 to 10. Charactersχone {\ displaystyle \ chi _ {1}}   are the main characters.

Modulo 1

Judgesφ(one)=one {\ displaystyle \ varphi (1) = 1}   character modulo 1:

χ∖n{\ displaystyle \ chi \ setminus n}  0
χone(n){\ displaystyle \ chi _ {1} (n)}  one

This is a trivial character.

Modulo 2

Existφ(2)=one {\ displaystyle \ varphi (2) = 1}   character modulo 2:

χ∖n{\ displaystyle \ chi \ setminus n}  0one
χone(n){\ displaystyle \ chi _ {1} (n)}  0one

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(one) {\ displaystyle \ chi (1)}   , since 1 generates a group of invertible elements modulo 2.

Modulo 3

there isφ(3)=2 {\ displaystyle \ varphi (3) = 2}   character modulo 3:

χ∖n{\ displaystyle \ chi \ setminus n}  0one2
χone(n){\ displaystyle \ chi _ {1} (n)}  0oneone
χ2(n){\ displaystyle \ chi _ {2} (n)}  0one−1

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(2) {\ displaystyle \ chi (2)}   , since 2 generates a group of invertible elements modulo 3.

Modulo 4

Existφ(four)=2 {\ displaystyle \ varphi (4) = 2}   character modulo 4:

χ∖n{\ displaystyle \ chi \ setminus n}  0one23
χone(n){\ displaystyle \ chi _ {1} (n)}  0one0one
χ2(n){\ displaystyle \ chi _ {2} (n)}  0one0−1

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(3) {\ displaystyle \ chi (3)}   , since 3 generates a group of invertible elements modulo 4.

L -Dirichlet series forχone(n) {\ displaystyle \ chi _ {1} (n)}   equal to the Dirichlet lambda function (closely related to the Dirichlet eta-function )

L(χone,s)=(one-2-s)ζ(s){\ displaystyle L (\ chi _ {1}, s) = (1-2 ^ {- s}) \ zeta (s)}   ,

Whereζ(s) {\ displaystyle \ zeta (s)}   is the Riemann zeta function. L- row forχ2(n) {\ displaystyle \ chi _ {2} (n)}   is a Dirichlet beta function

L(χ2,s)=β(s).{\ displaystyle L (\ chi _ {2}, s) = \ beta (s). \,}  

Modulo 5

Existφ(5)=four {\ displaystyle \ varphi (5) = 4}   characters modulo 5. In tables i is the square root of-one {\ displaystyle -1}   .

χ∖n{\ displaystyle \ chi \ setminus n}  0one23four
χone(n){\ displaystyle \ chi _ {1} (n)}  0oneoneoneone
χ2(n){\ displaystyle \ chi _ {2} (n)}  0onei−i−1
χ3(n){\ displaystyle \ chi _ {3} (n)}  0one−1−1one
χfour(n){\ displaystyle \ chi _ {4} (n)}  0one- ii−1

notice, thatχ {\ displaystyle \ chi}   fully defined valueχ(2) {\ displaystyle \ chi (2)}   , since 2 generates a group of invertible elements modulo 5.

Modulo 6

Existφ(6)=2 {\ displaystyle \ varphi (6) = 2}   characters modulo 6:

χ∖n{\ displaystyle \ chi \ setminus n}  0one23four5
χone(n){\ displaystyle \ chi _ {1} (n)}  0one000one
χ2(n){\ displaystyle \ chi _ {2} (n)}  0one000−1

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(5) {\ displaystyle \ chi (5)}   , since 5 generates a group of invertible elements modulo 6.

Modulo 7

Existφ(7)=6 {\ displaystyle \ varphi (7) = 6}   characters modulo 7. In the table belowω=exp⁡(πi/3). {\ displaystyle \ omega = \ exp (\ pi i / 3).}  

χ∖n{\ displaystyle \ chi \ setminus n}  0one23four56
χone(n){\ displaystyle \ chi _ {1} (n)}  0oneoneoneoneoneone
χ2(n){\ displaystyle \ chi _ {2} (n)}  0oneω2{\ displaystyle \ omega ^ {2}}  ω{\ displaystyle \ omega}  -ω{\ displaystyle - \ omega}  -ω2{\ displaystyle - \ omega ^ {2}}  −1
χ3(n){\ displaystyle \ chi _ {3} (n)}  0one-ω {\ displaystyle \ omega}  ω2{\ displaystyle \ omega ^ {2}}  ω2{\ displaystyle \ omega ^ {2}}  -ω{\ displaystyle - \ omega}  one
χfour(n){\ displaystyle \ chi _ {4} (n)}  0oneone−1one−1−1
χ5(n){\ displaystyle \ chi _ {5} (n)}  0oneω2{\ displaystyle \ omega ^ {2}}  -ω{\ displaystyle - \ omega}  -ω{\ displaystyle - \ omega}  ω2{\ displaystyle \ omega ^ {2}}  one
χ6(n){\ displaystyle \ chi _ {6} (n)}  0one-ω{\ displaystyle - \ omega}  -ω2{\ displaystyle - \ omega ^ {2}}  ω2{\ displaystyle \ omega ^ {2}}  ω{\ displaystyle \ omega}  −1

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(3) {\ displaystyle \ chi (3)}   , since 3 generates a group of invertible elements modulo 7.

Modulo 8

Existφ(8)=four {\ displaystyle \ varphi (8) = 4}   characters modulo 8.

χ∖n{\ displaystyle \ chi \ setminus n}  0one23four567
χone(n){\ displaystyle \ chi _ {1} (n)}  0one0one0one0one
χ2(n){\ displaystyle \ chi _ {2} (n)}  0one0one0−10−1
χ3(n){\ displaystyle \ chi _ {3} (n)}  0one0−10one0−1
χfour(n){\ displaystyle \ chi _ {4} (n)}  0one0−10−10one

notice, thatχ {\ displaystyle \ chi}   fully determined by the valuesχ(3) {\ displaystyle \ chi (3)}   andχ(5) {\ displaystyle \ chi (5)}   , since 3 and 5 generate a group of reversible elements modulo 8.

Modulo 9

Existφ(9)=6 {\ displaystyle \ varphi (9) = 6}   characters modulo 9. In the table belowω=exp⁡(πi/3). {\ displaystyle \ omega = \ exp (\ pi i / 3).}  

χ∖n{\ displaystyle \ chi \ setminus n}  0one23four5678
χone(n){\ displaystyle \ chi _ {1} (n)}  0oneone0oneone0oneone
χ2(n){\ displaystyle \ chi _ {2} (n)}  0oneω{\ displaystyle \ omega}  0ω2{\ displaystyle \ omega ^ {2}}  -ω2{\ displaystyle - \ omega ^ {2}}  0-ω{\ displaystyle - \ omega}  −1
χ3(n){\ displaystyle \ chi _ {3} (n)}  0oneω2{\ displaystyle \ omega ^ {2}}  0-ω{\ displaystyle - \ omega}  ω{\ displaystyle \ omega}  0ω2{\ displaystyle \ omega ^ {2}}  one
χfour(n){\ displaystyle \ chi _ {4} (n)}  0one−10one−10one−1
χ5(n){\ displaystyle \ chi _ {5} (n)}  0one-ω{\ displaystyle - \ omega}  0ω2{\ displaystyle \ omega ^ {2}}  ω2{\ displaystyle \ omega ^ {2}}  0-ω{\ displaystyle - \ omega}  one
χ6(n){\ displaystyle \ chi _ {6} (n)}  0one-ω2{\ displaystyle - \ omega ^ {2}}  0-ω{\ displaystyle - \ omega}  ω{\ displaystyle \ omega}  0ω2{\ displaystyle \ omega ^ {2}}  −1

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(2) {\ displaystyle \ chi (2)}   , since 2 generates a group of invertible elements modulo 9.

Modulo 10

Existφ(10)=four {\ displaystyle \ varphi (10) = 4}   characters modulo 10.

χ∖n{\ displaystyle \ chi \ setminus n}  0one23four56789
χone(n){\ displaystyle \ chi _ {1} (n)}  0one0one000one0one
χ2(n){\ displaystyle \ chi _ {2} (n)}  0one0i000- i0−1
χ3(n){\ displaystyle \ chi _ {3} (n)}  0one0−1000−10one
χfour(n){\ displaystyle \ chi _ {4} (n)}  0one0- i000i0−1

notice, thatχ {\ displaystyle \ chi}   fully determined byχ(3) {\ displaystyle \ chi (3)}   , since 3 generates a group of reversible elements modulo 10.

Examples

If p is an odd prime , then the function

χ(n)=(np),{\ displaystyle \ chi (n) = \ left ({\ frac {n} {p}} \ right), \}   Where(np) {\ displaystyle \ left ({\ frac {n} {p}} \ right)}   is a Legendre symbol , is a primitive Dirichlet character modulo p [9] .

More generally, if m is a positive odd number, the function

χ(n)=(nm),{\ displaystyle \ chi (n) = \ left ({\ frac {n} {m}} \ right), \}   Where(nm) {\ displaystyle \ left ({\ frac {n} {m}} \ right)}   is a Jacobi symbol , is a Dirichlet character modulo m [9] .

These are quadratic characters — in the general case, primitive quadratic characters arise exactly from the Kronecker – Jacobi symbol [10] .

Primitive characters and conductor

When passing from residues modulo N to residues modulo M, for any factor M of number N , information is lost. The effect of Dirichlet characters gives the opposite result - ifχ∗ {\ displaystyle \ chi *}   is a character modulo M , it induces a characterχ∗ {\ displaystyle \ chi *}   modulo N for any N multiple of M. A character is primitive if it is not induced by any character with a smaller modulus [3] .

Ifχ {\ displaystyle \ chi}   - the character modulo n and d divides n , we say that the module d is an induced module forχ {\ displaystyle \ chi}   , ifχ(a)=one {\ displaystyle \ chi (a) = 1}   for all a mutually prime with n and 1 mod d [11] : the character is primitive if there is no smaller induced module [12] .

We can formalize this in various ways by defining characters.χonemodNone {\ displaystyle \ chi _ {1} \ mod N_ {1}}   andχ2modN2 {\ displaystyle \ chi _ {2} \ mod N_ {2}}   as consistent , if for some module N such that N 1 and N 2 both share N , we haveχone(n)=χ2(n) {\ displaystyle \ chi _ {1} (n) = \ chi _ {2} (n)}   for all n coprime with N , that is, there is some characterχ∗ {\ displaystyle \ chi *}   originated asχone {\ displaystyle \ chi _ {1}}   soχ2 {\ displaystyle \ chi _ {2}}   . This is an equivalence relation on characters. The character with the smallest module in the equivalence class is primitive, and this smallest module is the conductor of characters in the class.

The non-primitiveness of characters can lead to the absence of in their L-functions .

Character Orthogonality

The orthogonality of the characters of the final group is transferred to the Dirichlet characters [13] .

If we fix the characterχ {\ displaystyle \ chi}   modulo n , then

∑amodnχ(a)=0{\ displaystyle \ sum _ {a {\ bmod {n}}} \ chi (a) = 0}   ,

ifχ {\ displaystyle \ chi}   not the main character, otherwise the amount isφ(n) {\ displaystyle \ varphi (n)}   .

Similarly, if we fix the residue class a modulo n , then the sum over all characters gives

∑χχ(a)=0{\ displaystyle \ sum _ {\ chi} \ chi (a) = 0}   ,

except for the case a = 1, when the sum isφ(n) {\ displaystyle \ varphi (n)}   .

From this we conclude that any periodic function with period n over the class of residues coprime to n is a linear combination of Dirichlet characters [14] .

History

Dirichlet characters along with theirL {\ displaystyle L}   -dirits were introduced by Dirichlet in 1831, as part of the proof of the Dirichlet theorem on the infinity of the number of primes in arithmetic progressions. He studied them only fors∈R {\ displaystyle s \ in \ mathbb {R}}   and mostly whens {\ displaystyle s}   tends to 1. The extension of these functions to the entire complex plane was obtained by Riemann in 1859.

See also

  • Gauss Amount
  • Primitive root on the muzzle n

Notes

  1. ↑ Montgomery, Vaughan, 2007 , p. 117-8.
  2. ↑ Montgomery, Vaughan, 2007 , p. 115.
  3. ↑ 1 2 Montgomery, Vaughan, 2007 , p. 123.
  4. ↑ Fröhlich, Taylor, 1991 , p. 218.
  5. ↑ Fröhlich, Taylor, 1991 , p. 215.
  6. ↑ Apostol, 1976 , p. 139.
  7. ↑ 1 2 3 Apostol, 1976 , p. 138.
  8. ↑ Apostol, 1976 , p. 134.
  9. ↑ 1 2 Montgomery, Vaughan, 2007 , p. 295.
  10. ↑ Montgomery, Vaughan, 2007 , p. 296.
  11. ↑ Apostol, 1976 , p. 166.
  12. ↑ Apostol, 1976 , p. 168.
  13. ↑ Apostol, 1976 , p. 140.
  14. ↑ Davenport, 1967 , p. 31–32.

Literature

  • Apostol TM Introduction to analytic number theory. - New York-Heidelberg: Springer-Verlag, 1976. - (Undergraduate Texts in Mathematics). - ISBN 978-0-387-90163-3 .
  • ApostolTM Some properties of completely multiplicative arithmetical functions // The American Mathematical Monthly. - 1971. - T. 78 , no. 3 . - S. 266–271 . - DOI : 10.2307 / 2317522 .
  • Harold Davenport. Multiplicative number theory. - Chicago: Markham, 1967. - T. 1. - (Lectures in advanced mathematics).
    • Davenport G. Multiplicative Number Theory. - M .: "Science", 1971.
  • Helmut Hasse. Vorlesungen über Zahlentheorie. - 2nd revised. - Springer-Verlag . - T. 59. - (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen). see chapter 13.
    • Hasse G. Lectures on number theory. - M .: Foreign Literature, 1953.
  • Mathar, RJ (2010), "Table of Dirichlet L-series and prime zeta modulo functions for small moduli", arΧiv : 1008.2547 [math.NT]  
  • Hugh L Montgomery, Robert C. Vaughan. Multiplicative number theory. I. Classical theory. - Cambridge University Press , 2007. - T. 97. - (Cambridge Studies in Advanced Mathematics). - ISBN 0-521-84903-9 .
    • Montgomery G. Multiplicative Number Theory. - M .: "The World", 1974.
  • Robert Spira. Calculation of Dirichlet L-Functions // Mathematics of Computation. - 1969. - T. 23 , no. 107 . - S. 489–497 . - DOI : 10.1090 / S0025-5718-1969-0247742-X .
  • Fröhlich A., Taylor MJ Algebraic number theory. - Cambridge University Press , 1991. - T. 27. - (Cambridge studies in advanced mathematics). - ISBN 0-521-36664-X .

Literature

  • Galochkin A. I., Nesterenko Yu. V., Shidlovsky A. B. Introduction to number theory. - M .: Publishing house of Moscow University, 1984.
  • Karatsuba A. A. Fundamentals of analytic number theory. - 3rd ed. - M .: URSS, 2004.
Source - https://ru.wikipedia.org/w/index.php?title=Character_(theory_number)&oldid=101958389


More articles:

  • Killer Iti
  • Kangandala (national park)
  • (58931) Palmis
  • 1310
  • Nepila, Hanzo
  • Zhoucun
  • LOMO (football club)
  • Han Sinsu
  • Khimki (Moscow)
  • List of Heads of State in 962

All articles

Clever Geek | 2019