Clever Geek Handbook
📜 ⬆️ ⬇️

De Bruyne - Erdos theorem

A beam at seven points

The de Bruyne – Erdös theorem , one of the important results in the geometry of incidence , establishes an exact lower bound for the number of lines definedn {\ displaystyle n} n points on the projective plane . By duality, this theorem implies a restriction on the number of intersections of the configuration of lines.

Content

  • 1 History
  • 2 Wording
  • 3 Proof
  • 4 Literature

History

Established by Nicholas de Bruyne and Pal Erdös in 1948 .

Wording

Let a set be givenP {\ displaystyle P}   ofn {\ displaystyle n}   points on the projective plane, of which not all lie on the same line. Let bet {\ displaystyle t}   this is the number of all lines passing through pairs of points fromP {\ displaystyle P}   : Thent⩾n {\ displaystyle t \ geqslant n}   . Moreover, ift=n {\ displaystyle t = n}   , then any two lines intersect at a point fromP {\ displaystyle P}   .

Proof

The standard proof is by induction . The theorem is definitely true for three points that do not lie on the same line. Let ben>3 {\ displaystyle n> 3}   , the statement is true forn-one {\ displaystyle n-1}   andP {\ displaystyle P}   - many ofn {\ displaystyle n}   points, not all of which lie on one straight line. By Sylvester’s theorem, one of these lines passes exactly through two points fromP {\ displaystyle P}   . Denote these two pointsa {\ displaystyle a}   andb {\ displaystyle b}   .

If when deleting a pointa {\ displaystyle a}   all remaining points will be on one straight line, thenP {\ displaystyle P}   forms a bundle ofP {\ displaystyle P}   direct (n-one {\ displaystyle n-1}   simple straight lines go throughP {\ displaystyle P}   , plus one straight line passing through the remaining points). Otherwise deletea {\ displaystyle a}   forms manyP {\ displaystyle P}   ofn-one {\ displaystyle n-1}   noncollinear points. By the assumption of induction, throughP {\ displaystyle P}   passn-one {\ displaystyle n-1}   lines that are at least one less than the number of lines passing through the points of the setP {\ displaystyle P}   .

Literature

  • NG de Bruijn, P. Erdős. A combinatioral [sic] problem // Indagationes Mathematicae. - 1948 .-- T. 10 . - S. 421-423 .
  • Lynn Margaret Batten. Combinatorics of finite geometries. - Cambridge University Press, 1997. - S. 25–27. - ISBN 0-521-59014-0 .
Source - https://ru.wikipedia.org/w/index.php?title=Breuin_de_ theorem_— Erdos &oldid = 99771402


More articles:

  • Burnt Alders
  • Barium hexabromoplatinate (IV)
  • Mulladzhanov, Shavkat
  • Smiths van Wasberge, Joseph Maria
  • Devon Island
  • Verichans
  • (382238) Euphem
  • Fraudsters
  • (5120) Bitiant
  • Muldacmens (platform)

All articles

Clever Geek | 2019