Clever Geek Handbook
📜 ⬆️ ⬇️

Arithmetic-geometric progression

Arithmetic-geometric progression - a sequence of numbersun {\ displaystyle u_ {n}} u _ {{n}} defined by the recurrence relationun+one=qun+d {\ displaystyle u_ {n + 1} = qu_ {n} + d} u _ {{n + 1}} = qu _ {{n}} + d whereq {\ displaystyle q} q andd {\ displaystyle d} d Are constants [1] . Particular cases of arithmetic-geometric progression are arithmetic progression (withq=one {\ displaystyle q = 1} q = 1 ) and geometric progression (atd=0 {\ displaystyle d = 0} d = 0 )

Common Member Formula

Consider the initial ratio:un+one=qun+d {\ displaystyle u_ {n + 1} = qu_ {n} + d}   atn=one,2,... {\ displaystyle n = 1,2, ...}  

Let in this relationq≠one {\ displaystyle q \ neq 1}   andd≠0 {\ displaystyle d \ neq 0}   . Adding to both parts the expressiondq-one {\ displaystyle {\ frac {d} {q-1}}}   we get

un+one+dq-one=q(un+dq-one){\ displaystyle u_ {n + 1} + {\ dfrac {d} {q-1}} = q \ left (u_ {n} + {\ dfrac {d} {q-1}} \ right)}  
un+dq-one=q(un-one+dq-one){\ displaystyle u_ {n} + {\ dfrac {d} {q-1}} = q \ left (u_ {n-1} + {\ dfrac {d} {q-1}} \ right)}  
...{\ displaystyle \ ldots}  
u3+dq-one=q(u2+dq-one){\ displaystyle u_ {3} + {\ dfrac {d} {q-1}} = q \ left (u_ {2} + {\ dfrac {d} {q-1}} \ right)}  
u2+dq-one=q(uone+dq-one){\ displaystyle u_ {2} + {\ dfrac {d} {q-1}} = q \ left (u_ {1} + {\ dfrac {d} {q-1}} \ right)}  

Multiplying the indicated equalities and reducing the same factors (or substituting the left side of the next order equation instead of the brackets on the right side), we obtain the explicit formula of the arithmetic-geometric progression term:

un+one=qn(uone+dq-one)-dq-one{\ displaystyle u_ {n + 1} = q ^ {n} (u_ {1} + {\ frac {d} {q-1}}) - {\ frac {d} {q-1}}}  

Properties

  • Arithmetic-geometric progression is a second-order return sequence and is given by the equation:
un+one=(q+one)un-qun-one{\ displaystyle u_ {n + 1} = (q + 1) u_ {n} -qu_ {n-1}}  
  • Differenced {\ displaystyle d}   arithmetic-geometric progression is determined by the formula
d=un2-un-oneun+oneun-un-one{\ displaystyle d = {\ frac {u_ {n} ^ {2} -u_ {n-1} u_ {n + 1}} {u_ {n} -u_ {n-1}}}}  
  • Sequencean=un+one-un {\ displaystyle a_ {n} = u_ {n + 1} -u_ {n}}   is a geometric progression with the same denominatorq {\ displaystyle q}   .
  • The sequence of partial sums of the members of the arithmetic-geometric progression is a third-order return sequence and is given by the equation:
Sn+one=(q+2)Sn-(2q+one)Sn-one+qSn-2{\ displaystyle S_ {n + 1} = (q + 2) S_ {n} - (2q + 1) S_ {n-1} + qS_ {n-2}}  
  • If the sequence of partial sums is an arithmetic-geometric progression, then the sequence itself is a geometric progression.

Notes

  1. ↑ Cloth ya. N. Arithmetic-geometric progression // Quantum . - 1975. - No. 1. - S. 36—39.
Source - https://ru.wikipedia.org/w/index.php?title=Arithmetic-geometric_progression&oldid=95730804


More articles:

  • Bochkaryovka (Amur region)
  • La Lutte (newspaper)
  • Environmental Design
  • Field Hockey at the 1962 Summer Asian Games
  • Kirillovka (Leningrad Region)
  • Krimets, Egor Vladimirovich
  • Wangenheim, Friedel von
  • Burnouf, Jean-Louis
  • Wartburg (District)
  • Saalfeld-Rudolstadt (District)

All articles

Clever Geek | 2019