Clever Geek Handbook
📜 ⬆️ ⬇️

Bochner identity

The Bochner identity is the general name for a family of identities in Riemannian geometry that connect Laplacians of different types and curvature . The identities obtained by integrating the Bochner identities are sometimes called Reilly identities .

Content

  • 1 Formulation
    • 1.1 Designations
  • 2 Consequences
  • 3 notes
  • 4 Literature

Wording

Let beS {\ displaystyle S}   there is a Dirac bundle over a Riemannian manifoldM {\ displaystyle M}   ,D {\ displaystyle D}   Is the corresponding Dirac operator , and then

D2ϕ=∇∗∇ϕ+R(ϕ){\ displaystyle D ^ {2} \ phi = \ nabla ^ {*} \ nabla \ phi + {\ mathfrak {R}} (\ phi)}  

for any sectionϕ:M→S {\ displaystyle \ phi \ colon M \ to S}   .

Conventions

Furtherei {\ displaystyle e_ {i}}   denotes an orthonormal frame at a point.

  • ∇{\ displaystyle \ nabla}   denotes connectivity onS {\ displaystyle S}   , and
    ∇∗∇ϕ=-∑i∇ei∇eiϕ,{\ displaystyle \ nabla ^ {*} \ nabla \ phi = - \ sum _ {i} \ nabla _ {e_ {i}} \ nabla _ {e_ {i}} \ phi,}  
the so-called Laplacian in connection .
  • R{\ displaystyle {\ mathfrak {R}}}   - sectionHom(S,S) {\ displaystyle \ mathrm {Hom} (S, S)}   defined as
    R(ϕ)=one2⋅∑i,jei.ej.Rei,ekϕ,{\ displaystyle {\ mathfrak {R}} (\ phi) = {\ tfrac {1} {2}} \ cdot \ sum _ {i, j} e_ {i} .e_ {j} .R_ {e_ {i }, e_ {k}} \ phi,}  
where ". {\ displaystyle.}   " Stands for Clifford's multiplication , and
RX,Y=∇X∇Y-∇Y∇X-∇[X,Y]{\ displaystyle R_ {X, Y} = \ nabla _ {X} \ nabla _ {Y} - \ nabla _ {Y} \ nabla _ {X} - \ nabla _ {[X, Y]}}  
- transformation of curvature .
  • D{\ displaystyle D}   - Dirac operator onS {\ displaystyle S}   , i.e
    Dϕ=∑iei.∇eiϕ.{\ displaystyle D \ phi = \ sum _ {i} e_ {i}. \ nabla _ {e_ {i}} \ phi.}  
andD2ϕ=Δϕ {\ displaystyle D ^ {2} \ phi = \ Delta \ phi}   Hodge Laplacian on differential forms

Consequences

  • From the Bochner identity for a gradient functionu {\ displaystyle u}   we obtain the following integral formula for any closed manifold
    ∫M|Δu|2-∫M|Hessu|2=∫MRic(∇u,∇u){\ displaystyle \ int \ limits _ {M} | \ Delta u | ^ {2} - \ int \ limits _ {M} | \ mathrm {Hess} \, u | ^ {2} = \ int \ limits _ { M} {\ mbox {Ric}} (\ nabla u, \ nabla u)}   ,
WhereHessu {\ displaystyle \ mathrm {Hess} \, u}   denotes hessianu {\ displaystyle u}   .
  • Ifu:M→R {\ displaystyle u \ colon M \ rightarrow \ mathbb {R}}   Is the harmonic function then
    Δ(one2⋅|∇u|2)=|∇2u|2+Ric(∇u,∇u){\ displaystyle \ Delta ({\ tfrac {1} {2}} \ cdot | \ nabla u | ^ {2}) = | \ nabla ^ {2} u | ^ {2} + {\ mbox {Ric}} (\ nabla u, \ nabla u)}   ,
Where∇u {\ displaystyle \ nabla u}   denotes a gradientu {\ displaystyle u}   . In particular:
  • Compact manifolds with positive Ricci curvature do not admit nonzero harmonic functions.
  • Ifu {\ displaystyle u}   Is a harmonic function on a manifold with positive Ricci curvature, then the function|∇u| {\ displaystyle | \ nabla u |}   subharmonic .
  • It follows from the Bochner formula that on compact manifolds with a positive curvature operator there are no harmonic forms of any degree, that is, it is a rationally homological sphere.
    • By another method, namely the Ricci flow , it was possible to prove that any such manifold is diffeomorphic to the sphere factor with respect to a finite group. [one]

Notes

  1. ↑ B. Wilking, C. Böhm. Manifolds with positive curvature operators are space forms (English) // Ann. of Math. (2). - 2008 .-- Vol. 167 , no. 3 . - P. 1079-1097 .

Literature

  • H. Blaine Lawson, Marie-Louise Michelsohn. Spin geometry. - 1989.
Source - https://ru.wikipedia.org/w/index.php?title=Bochner_identity&oldid=98445072


More articles:

  • Small (Millerovo District)
  • Morozovka (Rostov Region)
  • Church of the Holy Apostles Peter and Paul (Shelekhov)
  • Thunder (Special Forces)
  • Fencing at the 1996 Summer Olympics
  • Gengyo
  • Siyazov, Mikhail Alexandrovich
  • Friedheim, Arthur
  • Guts Over Fear
  • Dipalladium gallium

All articles

Clever Geek | 2019