Clever Geek Handbook
📜 ⬆️ ⬇️

Dirichlet formula

Dirichlet formula for the number of divisors - asymptotic formula

∑n≤Nτ(n)=Nln⁡N+(2γ-one)N+O(N),{\ displaystyle \ sum _ {n \ leq N} \ tau (n) = N \ ln N + (2 \ gamma -1) N + O ({\ sqrt {N}}),} \ sum _ {{n \ leq N}} \ tau (n) = N \ ln N + (2 \ gamma -1) N + O ({\ sqrt N}),

Whereτ(n) {\ displaystyle \ tau (n)} \ tau (n) - number of dividersn {\ displaystyle n} n ,γ {\ displaystyle \ gamma} \ gamma - Euler constant - Mascheroni , andO {\ displaystyle O} O - O-big .

About proof

The proof immediately follows from the fact that the sum indicated is equal to the number of integer points with integer positive coordinates in the domain bounded by the hyperbolayx=N {\ displaystyle yx = N}   and coordinate axes.

History

The formula was obtained by Dirichlet in 1849.

Source - https://ru.wikipedia.org/w/index.php?title=Dirichlet Formula&oldid = 61010224


More articles:

  • Amphilochius (Stergiu)
  • Belina-Prazhmovsky, Vladislav
  • Spain Second Football Division 1990/1991
  • Skobeltsyno
  • Two-tone carnation
  • Ceylon Halot
  • Largest Alternating Subsequence
  • Polynsky, Sergey Mikhailovich
  • Slobodiansky, Mikhail Grigoryevich
  • 1950 European Athletics Championships

All articles

Clever Geek | 2019