Clever Geek Handbook
📜 ⬆️ ⬇️

Luttinger Options

Luttinger parameters are dimensionless parameters characterizing the dispersion of the semiconductor valence bands in the framework of the Kohn-Luttinger approach. Introduced by Luttinger in 1956 when recording effective(k⋅p) {\ displaystyle (\ mathbf {k} \ cdot \ mathbf {p})} {\ displaystyle (\ mathbf {k} \ cdot \ mathbf {p})} Hamiltonian for Ge and Si in a magnetic field [1] .

Content

  • 1 Definition
  • 2 Relationship with effective mass
  • 3 References
  • 4 Literature
  • 5 notes

Definition

The sixfold degenerate valence band in the semiconductors of the zinc blende structure splits as a result of spin-orbit interaction into a twofold degenerate CO band and a fourfold degenerate band, which generates branches of light and heavy holes . In the effective HamiltonianD {\ displaystyle \ mathbf {D}}   recorded for the zoneΓfifteen {\ displaystyle \ Gamma _ {15}}   , three independent dimensionless parameters are involvedγone {\ displaystyle \ gamma _ {1}}   ,γ2 {\ displaystyle \ gamma _ {2}}   ,γ3 {\ displaystyle \ gamma _ {3}}   called the Kohn-Latinger parameters:

D=ℏ22m[(γone+52γ2)k2-2γ2(k⋅J)2-2γ3(∑i=one3{kαi,kβi}{Jαi,Jβi})+D(A)],{\ displaystyle \ mathbf {D} = {\ dfrac {\ hbar ^ {2}} {2m}} \ left [\ left (\ gamma _ {1} + {\ frac {5} {2}} \ gamma _ {2} \ right) \ mathbf {k} ^ {2} -2 \ gamma _ {2} \ left (\ mathbf {k} \ cdot \ mathbf {J} \ right) ^ {2} -2 \ gamma _ {3} \ left (\ sum _ {i = 1} ^ {3} \ left \ {\ mathbf {k} _ {\ alpha _ {i}}, \ mathbf {k} _ {\ beta _ {i} } \ right \} \ left \ {\ mathbf {J} _ {\ alpha _ {i}}, \ mathbf {J} _ {\ beta _ {i}} \ right \} \ right) + D ^ {\ left (A \ right)} \ right],}  

WhereD(A)=ecκJ⋅H+ecq(Jx3Hx+Jy3Hy+Jz3Hz) {\ displaystyle D ^ {\ left (A \ right)} = {\ frac {e} {c}} \ kappa \ \ mathbf {J} \ cdot \ mathbf {H} + {\ frac {e} {c} } q \ left (\ mathbf {J} _ {x} ^ {3} \ mathbf {H} _ {x} + \ mathbf {J} _ {y} ^ {3} \ mathbf {H} _ {y} + \ mathbf {J} _ {z} ^ {3} \ mathbf {H} _ {z} \ right)}   - relativistic memberJ {\ displaystyle \ mathbf {J}}   Is the operator of the angular momentum matrix for the state with spin 3/2,H {\ displaystyle \ mathbf {H}}   - a magnetic field,κ {\ displaystyle \ kappa}   ,q {\ displaystyle q}   - dimensionless constants. The sum sign means the sum of the cyclic permutationsαi=x,y,z {\ displaystyle \ alpha _ {i} = x, y, z}   ,βi=y,z,x {\ displaystyle \ beta _ {i} = y, z, x}   .

Dimensionless parameters similar to the Luttinger parameters appear when recording effective Hamiltonians for other bands and symmetries. For example, in the 8-band Kane Hamiltonian, they are called Kane parameters.

Effective Mass Relationship

In the structures of cubic syngony, near the pointΓ {\ displaystyle \ Gamma}   :

  • mass of heavy holes:mhh=m0γone-2γ2 {\ displaystyle m _ {\ mathrm {hh}} = {\ frac {m_ {0}} {\ gamma _ {1} -2 \ gamma _ {2}}}}  
  • mass of light holes:mlh=m0γone+2γ2 {\ displaystyle m _ {\ mathrm {lh}} = {\ frac {m_ {0}} {\ gamma _ {1} +2 \ gamma _ {2}}}}  

References

  • GaAs :γone {\ displaystyle \ gamma _ {1}}   = 6.98;γ2 {\ displaystyle \ gamma _ {2}}   = 2.06;γ3 {\ displaystyle \ gamma _ {3}}   = 2.93 [2]
  • InAs :γone {\ displaystyle \ gamma _ {1}}   = 20;γ2 {\ displaystyle \ gamma _ {2}}   = 8.5;γ3 {\ displaystyle \ gamma _ {3}}   = 9.2 [3]
  • InP :γone {\ displaystyle \ gamma _ {1}}   = 5.08;γ2 {\ displaystyle \ gamma _ {2}}   = 1.60;γ3 {\ displaystyle \ gamma _ {3}}   = 2.10 [2]

Literature

  • Yu P., Cardona M. Fundamentals of Semiconductor Physics. M. - Fizmatlit, 2002. 87.

Notes

  1. ↑ Luttinger, JM (1956), " Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory ", Phys. Rev. (American Physical Society). - T. 102 (4): 1030-1041 , DOI 10.1103 / PhysRev.102.1030  
  2. ↑ 1 2 I. Vurgaftmana, JR Meyer, R. Ram-Mohan, J. Appl. Phys. 66 , 11, (2001) p. 5815-5874
  3. ↑ See Vurgaftman (2001), meaningγone {\ displaystyle \ gamma _ {1}}   questionable
Source - https://ru.wikipedia.org/w/index.php?title=Lattinger_ parameters&oldid = 73693551


More articles:

  • French Open Tennis Championships 2005 in men's doubles
  • TM-1-14
  • Roslavlev, Mikhail Ivanovich
  • UEFA Champions League 2015/2016
  • Yugi (village at the railway station, Leningrad Region)
  • Chernyavsky, Vasily Efimovich
  • Kinyakin, Sergey Ivanovich
  • Mordovian Parks
  • Wide Urolof
  • Dyniobium Phosphide

All articles

Clever Geek | 2019