Mantle cell lymphoma (MKL, English Mantle Cell Lymphoma, MCL ) is a unique subspecies of non-Hodgkin lymphoma (NHL, English Non-Hodgkin's Lymphoma, NHL ). It is highly characteristic of the chromosomal translocation t (11; 14) (q13; q32) [2] [3] [4] and the overexpression of the nuclear protein cyclin D1 .
| Mantle cell lymphoma | |
|---|---|
A micrograph showing mantle cell lymphoma (bottom of image) in a biopsy sample of the terminal ileus. Hematoxylin-eosin stain. | |
| ICD-10 | C 85.7 |
| ICD-10-KM | |
| ICD-9 | 200.4 |
| ICD-9-KM | |
| ICD-O | M 9673/3 |
| eMedicine | med / 1361 |
| Mesh | D020522 |
Most patients with MKL get into the field of view of doctors already in the advanced stage of the disease ( English advanced stage disease ). Often there is an extranodal (extra-nodal) lesion ( English extranodal disease ), that is, the spread of MKL beyond the lymphatic system . In accordance with the clinical and biological risk factors available for each patient, MCL can either be slow but steadily progressing (indolent), or, conversely, an aggressive, rapid course. To date, there is practically no cure for MKL that can lead to a radical cure (complete disappearance of all MKL cells from the body and the absence of subsequent relapses of the disease), and not just temporary remissions, followed by relapses. The only exception to this rule is allogeneic hematopoietic stem cell transplantation . This method is really able to radically cure MKL (although not in all cases) and give a chance of no relapse. However, modern immunochemotherapy regimens with subsequent consolidation using high-dose chemotherapy and autologous hematopoietic stem cell transplantation in young patients, the emergence of an increasing number of effective alternative immunochemotherapy regimens for sequential use in subsequent relapses of MCL or with resistance to first-line therapy, the emergence of new targeted drugs for treatment MCL and the development of maintenance therapy strategies have led to an improvement in overall and relapse-free rates. live survival. The median survival of patients with newly diagnosed MKL in recent years has increased from 3 to 6 years.
Content
Historical Information
For the first time, this subspecies of lymphoma was specifically recognized and described by Lennert, who described it in 1973 and gave it the name "diffuse germinocytoma" ( eng. Diffuse germinocytoma ). Then, with the adoption of the Kiel Classification of 1974 , this subspecies of lymphoma was renamed to "centrocytic lymphoma" or "lymphoma from centrocytes" ( English centrocytic lymphoma ). Subsequently, this variety of NHL was called by various morphological and descriptive terms - "mantle zone lymphoma" ( English mantle zone lymphoma ), "lymphocytic lymphoma of an intermediate degree of differentiation" ( English lymphocytic lymphoma of intermediate differentiation or English intermediate lymphocytic lymphoma ).
In 1992 , on the basis of the general understanding formed by oncohematologists that this subspecies of NHL has its own characteristic morphology and immunophenotype of cells and that it is characterized by a specific cytogenetic anomaly - t (11.14) (q13, q32) and a specific biochemical anomaly - overexpression cyclin D1, the term βmantle cell lymphomaβ, which was then generally accepted, was proposed. This term reflects the apparent origin of MKL cells from mutated normal B-lymphocytes of the mantle zone of the lymph nodes. After achieving this breakthrough in understanding the nature of MKL, it became possible to focus clinical and pathogenetic studies on this clearly defined form with clear diagnostic criteria. This, in turn, has led to a deepening of the current understanding of the nature of MKL, the spectrum of its clinical and biological variants, and specific therapeutic problems and difficulties associated with MKL.
Epidemiology of MKL
Patients with MKL make up about 4-6% of the total number of patients with NHL [5] [6] . Characteristic is a greater predominance of older men, compared with other subtypes of lymphomas. The ratio of men and women among patients with MKL is approximately 2-3: 1. The average age of patients at the time of the first visit to a doctor is about 65 years. There were no specific etiological factors predisposing to the development of MCL. Relatives of patients with MKL of the first degree of kinship show a statistically significantly increased risk of developing other lymphoid neoplasms. However, the occurrence of precisely MKL in several members of the same family is a rather rare event.
The clinical picture of MKL
Patients with MKL usually first come to the attention of doctors already in an advanced stage of the disease. More than 90% of patients at the time of diagnosis are already in stages III or IV, and often have so-called B-symptoms, or constitutional symptoms that reflect general intoxication of the body - fever ( hyperthermia ), night sweats, unexplained weight loss of more than 10% per last six months. Splenomegaly (an increase in the size of the spleen is observed in more than 50% of patients, often in combination with the leukemic phase of the disease - that is, the presence of MKL cells in the blood. In some patients, the disease is largely non-nodal in nature and is limited to damage to the bone marrow and / or spleen , in combination with the presence of MKL cells in the blood.For reasons that are not completely understood, these patients may experience a slower course of the disease than in patients with a predominant lesion of the lymph nodes. onnym extranodal (extranodal) defeat at the MCL is the defeat of the gastrointestinal tract . In particular, there may be lymphomatous colon polyps or polyps of the stomach . Subclinical damage the mucous membrane of the stomach or large intestine is observed in most patients with endoscopic biopsy , even in the absence of obvious polyps or visible changes in the mucous membrane.This tropism of MKL with respect to the gastrointestinal tract has not yet been fully explained, but it may be associated with expression on the surface of the MKL adhesion molecules, such as the milling mucosal receptor molecule Ξ±4Ξ²7. Damage to the genitourinary system , lungs and soft tissues, including soft tissues of the head and neck, periorbital tissues of the eye, can also be observed. Damage to the central nervous system , either parenchymal (in the brain tissue itself) or leptomeningeal (shell), is not typical for the initial manifestation of MCL. However, specific MKL lesion of the central nervous system can develop in patients with MKL subsequently, in connection with the progression of the disease. Also, in a small part of patients, especially with the blastoid variant of MKL, isolated central nervous system relapses after initially successful treatment are encountered. The frequency of central nervous system relapses has increased recently due to the emergence of more effective systemic therapy and an increase in the survival time of patients with MKL. Previously, most patients with MKL did not survive until the occurrence of CNS relapse, dying from extra-cerebral relapses. Therefore, the role of central nervous system prophylaxis (intrathecal chemotherapy and / or central nervous system irradiation) in the general treatment regimen for MKL and in the prevention of central nervous system relapse is being investigated in clinical trials [7] .
MKL Latency and Lymphogenesis
As in the case of most other types of malignant tumors , the true duration of the latent phase of the disease, from the time of the initial tumor transformation of a certain B-lymphocyte, until the first clinical symptoms of the disease appears, is not known. The sequence of lymphomogenesis in MKL is also not known - the sequence of events from the initial transforming event to the time of the final malignancy and the onset of uncontrolled clonal proliferation and expansion. Presumably, the latent phase of the disease in the case of MKL can be quite long. The key to understanding what approximately time interval can be discussed is an interesting case in which the diagnosis of MCL was simultaneously established in a patient and a donor 12 years after allogeneic stem cell transplantation of hematopoietic cells for a completely different disorder. In this case, an identical - of donor origin - clonality of MKL cells in the donor and recipient was established. In addition, a number of observations were published in which it was shown that in a number of patients with an established diagnosis of MCL, in the lymph nodes removed 7-15 years or more before diagnosis, and removed for completely different reasons, βoccult "(Single) cells of MKL with a characteristic translocation t (11; 14) (q13; q32). In other reports, it was shown that sometimes during surgical removal of the lymph nodes for one reason or another, people who are not diagnosed with MKL or even suspect lymphoma show βoccultβ MKL cells with a characteristic translocation t (11; 14) (q13; q32) and the characteristic overexpression of cyclin D1 - the so-called in situ MCL. The true clinical significance of such findings is not known. The need to treat patients with this kind of accidentally discovered "occult" MKL in situ before the onset of clinical symptoms has also not been proven. Some, but not all, of these patients with βMKL in situβ subsequently develop an explicit MKL clinic, while others do not. These data support the modern idea of ββa long latent period from a transforming event to the development of an explicit clinic of MCL. In addition, these data suggest that the primary transforming event initiating further lymphomogenesis necessary for the development of MCL is the appearance of cyclin D1 overexpression in the cell as a result of translocation t (11; 14) (q13; q32).
Pathomorphological picture of MKL
As the immunophenotype and cytogenetics of MKL cells were characterized in more detail, and most importantly, after a strong correlation of this type of lymphoma with a specific chromosomal translocation t (11; 14) (q13; q32) was detected and understood, leading to to the characteristic overexpression of cyclin D1, the differential diagnosis of MCL from other small cell lymphomas has been greatly simplified.
The normal cytoarchitectonics of lymph nodes affected by MKL are, as a rule, obliterated or obscured due to the diffuse spread of MKL cells having a uniform, monotonous appearance. In some cases, a more nodular, less diffuse character of the growth of MKL cells can be observed, or MKL cells can be seen surrounding the residual reactive germinal centers that survived the destruction, similar to the mantle zone around them. The nodal, rather than diffuse, nature of the MCL growth or partial preservation of cytoarchitectonics by the type of the mantle zone around reactive germinal centers, as a rule, is associated with a slower course of the disease and longer survival.
In classical cases (80-90% of all cases of MKL), MKL cells are small or medium in size, with scanty cytoplasm and nuclei that are alternately irregular in the contours. Nuclear chromatin is granular. MKL cells may have a small, fuzzy, almost indistinguishable eosinophilic nucleolus. Occasionally, MKL cells may resemble small lymphocytes with round nuclei, or have an appearance partly reminiscent of monocytes (monocytoid appearance). The variant in which MKL cells resemble small lymphocytes usually has a slow course. Large cells resembling centroblasts or immunoblasts are not characteristic of MKL. The background often contains hyalinized small blood vessels and may contain histiocytes. Proliferative centers are absent. Sometimes plasma cells can be seen in the background, but they are reactive, and not part of the neoplastic (tumor) population.
In the cases of MKL, morphology is not typical. So, for example, in the blast or blastoid variant of MKL, malignant cells resemble lymphoblasts with scanty cytoplasm and thin nuclear chromatin. With this option, a very high proliferative index is often observed, that is, a very high cell division rate. In the pleomorphic variant of MKL, the malignant clone consists of a more diverse (pleomorphic), non-monotonously looking cells that are larger than typical MKL cells and have large nuclei with irregular contours and clearly visible nucleoli. Both morphological variants of MKL are associated with a more aggressive course of the disease and are prognostically less favorable than the typical variant.
MKL cell immunophenotype
MKL cells carry surface immunoglobulins of the IgM and IgD classes. They are positive on CD20 and CD79a, and are generally also positive on CD5, CD43 and FMC7. Up to 94% of all cases express CD43, but only 80% of cases, as shown by some studies, are CD5-positive, the remaining 20% ββare CD5-negative. MKL cells are most often negative on CD10 and, as a rule, negative on CD23. Protein Bcl-2 can be both positive and negative. Staining at MUM1 / IRF4 is negative. Positive staining for nuclear cyclin D1 is characteristic, which reflects the characteristic genetic abnormality t (11; 14) (q13; q32) underlying the pathogenesis of MKL. Staining for cyclin D1 is usually also positive in those rare cases where the anomaly t (11; 14) (q13; q32) is not detected. Even less frequently, cyclin D1 is negative, but cyclins D2 or D3 are expressed instead. Such cyclin D1-negative cases, confirmed by gene expression profiling, can present significant diagnostic difficulties. Expression of the nuclear transcription factor of Sox11 neurons is positive in 90% of MCL cases, including in some cases negative for cyclin D1. Although Sox11 expression is not specific for MKL and is found in cases of hairy cell leukemia, lymphocytic leukemia and Burkittβs lymphoma , nevertheless staining for Sox11 can be a useful diagnostic tool for MKL. There are suggestions that Sox11 expression in the cytoplasm, and not in the cell nucleus, is a poor prognostic marker for the nodular form of MKL. At the same time, the absence of Sox11 expression in the non-nodular, leukemic form of MCL is associated with a slower, indolent course of this form. The value of the Ki-67 proliferation index for MKL is very variable. However, a high proliferative index is a poor prognostic marker. Staining for follicular dendritic cells, as a rule, shows an expanded and sharply disturbed reticular structure. These changes are most obvious in cases with more nodal growth, but they are usually present even in cases with a more diffuse growth pattern of MCL. Unlike other B-cell lymphomas, with MKL, cells more often express light chains of immunoglobulin type lambda rather than kappa type.
In a detailed study of individuals who look like ordinary reactive inflammatory lymph nodes, who do not suffer from MKL and who have no suspicion of lymphoma, sometimes a small number of cyclins of D1-positive cells are found. These cases are extremely rare. They are characterized by the presence of a small number of cyclins of D1-positive cells in a small part of the follicles of the affected lymph nodes. In this case, the localization of cyclins of D1-positive cells in the inner part of the mantle zone adjacent to the germinal (germinal) center of the follicle is characteristic. These cells contain the classic translocation t (11; 14) (q13; q32), which can be demonstrated using fluorescence in situ hybridization (FISH). The clinical relevance of accidentally finding such a minimal infiltration of the lymph node by cells similar to mantle cell lymphoma cells (now called βmantle cell lymphoma in situβ) has not yet been determined. The need to treat such patients before they have obvious clinical symptoms of MCL is not obvious.
Cytogenetics and molecular pathogenesis of MKL
The molecular pathogenesis of MKL, as well as other malignant neoplasms in humans, is based on genetic and biochemical changes that lead to disruption of the regulation and control of the cell cycle, as well as to disruption of the mechanisms of response to DNA damage. Most, if not all, of the molecular and cytogenetic changes described to date with MCL, apparently, somehow affect these two most important aspects of cell life: either the system of regulation of the cell cycle, or the system of response to DNA damage. So, a distinctive feature of MKL is the chromosomal translocation t (11; 14) (q13; q32), which is found in the vast majority of cases of MKL. This chromosomal translocation leads to the development of overexpression of cyclin D1, which plays an important role in regulating the transition from phase G1 to phase S of the cell cycle. The result of such a translocation of the 11q13 chromosome locus containing the cyclin D1 gene and designated as Bcl-1 (B-cell lymphoma / leukemia 1) under the regulation of the enhancer of the IgH immunoglobulin connecting region located in the 14q32 region leads to increased expression and activity of cyclin D1, which, as a rule, is not expressed in normal B cells. And cyclin D1 forms complexes with cyclin-dependent kinases CDK4 and CDK6 and activates them. Thus, an increase in the expression of cyclin D1 leads to an increase in the activity of CDK4 and CDK6. And activated CDK4 and CDK6, in turn, phosphorylate and activate the so-called βretinoblastoma proteinβ (Rb) and, thus, directly contribute to the progression of the cell cycle and cell division. In addition, an increase in the level of cyclin D1 / CDK complexes promotes the binding (sequestration) and inactivation of CDK inhibitors - proteins p27 kip1 and p21. And these proteins - p27 kip1 and p21 - are usually associated with the cyclin E / CDK2 complex, which, after its activation, facilitates entry into the S phase. Thus, it appears that aberrant, overexpression of cyclin D1 plays a crucial role in the pathogenesis of MKL. In addition, it was shown that the level of expression of cyclin D1 directly correlates with the proliferation rate of MKL cells and, therefore, with the degree of clinical aggressiveness of this type of lymphoma.
In addition to the overexpression and deregulation of cyclin D1, which is the result of the chromosomal translocation t (11; 14) (q13; q32), other genetic mutations are often found during MKL, leading to a disruption in the normal regulation of the cell cycle. In particular, in a significant proportion of patients with MCL, using normal karyotyping or FISH, hemizygous or homozygous deletions are detected at the 9p21 chromosomal locus. And these chromosomal deletions, in turn, lead to impaired functioning of the p16 INK4a protein. And this protein is an inhibitor of cyclin-dependent kinases CDK4 and CDK6 (those same kinases that are activated by cyclin D1). Thus, a normally functioning protein p16 INK4a , by inhibiting the activity of cyclin-dependent kinases CDK4 and CDK6, helps maintain the Rb protein (retinoblastoma protein) in its dephosphorylated, antiproliferative state. And vice versa: functional inactivation of p16 INK4a protein (for example, as a result of a 9p21 deletion) in MKL cells increases the activity of cyclin-dependent kinases CDK4 and CDK6 and, thus, increases the phosphorylation of Rb protein and causes a further progression of the cell cycle, i.e. cell division. Thus, the functional inactivation of p16 INK4a in MKL cells can complement and enhance the effect of abnormal expression of cyclin D1 - both changes lead to an increase in the activity of cyclin-dependent kinases CDK4 and CDK6 and to an increase in the phosphorylation of Rb protein, and therefore to an increase in the mitotic activity of the cell. It is worth noting that cases of MKL with functionally inactive p16 INK4a are usually characterized by increased proliferative activity, a higher Ki-67 index and a more aggressive clinical course. Rare cases of MKL were also described in which the functional activity of the p16 INK4a protein was not changed, but there was increased expression and genomic amplification of the BMI-1 protein, which belongs to the Polycomb gene group and acts as a transcriptional repressor of genes Rare cases of wild-type MCL ( WT) statuses of the p16INK4a locus were described with increased expression and genomic amplification of BMI-1, which belongs to the Polycomb gene group and acts as a transcriptional repressor of the p16 INK4a locus genes, i.e., prevents reading of the p16 INK4a gene and co responsible synthesis of this protein. Thus, overexpression of BMI-1 protein can be a pathogenetic alternative to the more frequently observed deletion of its target, protein p16 INK4a . The effect is the same in both cases. Finally, several cases of MKL with genomic amplification and overexpression of the CDK4 cyclin-dependent kinase protein have been detected. This is another additional mechanism of disruption of the normal regulation of the cell cycle at the stage of verification and transition from G1 to S-phase.
An important aspect of lymphomogenesis in MKL is the appearance of genetic mutations in genes that affect how a cell responds to DNA damage. Normally, the cell in response to DNA damage starts the process of DNA repair (an attempt to repair the damage). And if this fails, the cell either stops the cell cycle, that is, stops the process of division, or starts the process of apoptosis - programmed cell death. In malignant cells, this often does not happen. So, in particular, in MKL cells, a deletion of the chromosome fragment 11q22-23 is often observed. And with this fragment, the so-called βmutated ataxia-telangiectasia geneβ (ATM) is also removed. Often, in addition to the hemizygous deletion of ATM (that is, deletion of this gene in one of two paired 11 chromosomes), mutations in the second copy of the ATM gene are also observed in MKL cells. And the ATM gene encodes kinases that belong to the superfamily of PI3K-like proteins. This gene plays a key role in the cellular response to DNA damage. The ATM gene mutations observed in MKL cells often affect the active catalytic (kinase) domain of the ATM protein, leading to its inactivation or decreased activity, or lead to the formation of a truncated, non-functional, kinase-free ATM protein. In addition to the frequently observed mutations in the ATM gene, with MKL, mutations of other molecules involved in the reaction to DNA damage are sometimes observed. So, sometimes with MKL, changes in proteins that are targets of the ATM kinase itself are observed. In particular, changes in the kinase genes of CHK2 and / or CHK1 are occasionally observed in MKL. And the CHK2 kinase stabilizes and activates the p53 protein, which plays a central role in the response to DNA damage and triggers cell cycle arrest, apoptosis, or an attempt to repair DNA. The decrease in the level of CHK2 protein and / or its random mutations observed in some cases of MKL, leading to a decrease in its catalytic kinase activity, leads, in turn, to a decrease in the activity and functionality of the p53 protein and to the fact that cells that would have to start apoptosis or stop breeding due to unacceptable DNA damage, survive and continue to divide. This, in turn, leads to the accumulation of genetic mutations and chromosomal aberrations in lymphomatous cells. It is important to note that p53 protein is inactivated in approximately 30% of MKL cases with blast or blastoid morphology, a high proliferative index, and an aggressive clinical course. At the same time, with MKL with classical morphology and low proliferative activity, a decrease in functionality or inactivation of p53 is rare.
Some studies show that the immunohistochemically measured proliferative index Ki-67, which characterizes the proliferation rate of tumor cells, may be associated with the degree of clinical aggressiveness of lymphomas in general and MLC in particular. In particular, a low proliferative index (low proliferation rate) usually corresponds to a more favorable clinical course, while a high proliferative index is associated with a shorter survival time after diagnosis. Profiling expression of genes that affect the rate of cell proliferation in MKL provides a quantitative expression of the rate of proliferation of lymphomatous cells, called the "proliferative signature." The determination of proliferative signatures allows one to determine prognostic subgroups of patients with MKL that differ in their median survival by more than 5 years. Proliferative signatures obtained on the basis of gene expression profiling that affect cell proliferation rate allow predicting the survival of patients much more accurately than certain molecular markers individually or in combination (for example, cyclin D1 expression level, mutations in the p16 INK4a gene ). Therefore, proliferative signatures can be considered as a total, integrative quantitative assessment of the degree of βcorruptionβ, malignancy of MKL cells, and the number of oncogenic mutations experienced by them. Proliferative signatures can be very useful in the future when studying various methods of targeted therapy and when deciding on the use of certain treatment methods depending on the risk group (defined just by the proliferative signature). Recently, researchers have attracted the attention of more indolent, slowly flowing forms of MCL. Apparently, these indolent cases of MKL are characterized by fewer genetic changes in the cells in comparison with more typical forms of MKL, and are characterized by the presence of mutations in the IgV H genes in most cases.
Diagnosis and staging of MKL
Most patients with MKL for the first time come to the attention of doctors already at an advanced stage, with sufficiently pronounced symptoms, and often with the presence of constitutional B-symptoms and / or one or more foci of extranodal (extra-nodal) lesions.
When staging MKL, generally accepted, standard approaches to staging lymphomas are used, including a thorough medical history (life and illness history), a thorough physical examination, CT and MRI of the whole body (or, at least, CT of the chest, abdominal, pelvic organs and, preferably, the neck), ultrasound of the abdominal cavity and pelvic organs, puncture aspiration and trepanobiopsy of the bone marrow, general clinical analysis of blood with an expanded leukocyte formula and ESR, standard blood biochemistry with a mandatory definition levels of beta-2 microglobulin and LDH (lactate dehydrogenase). Bone marrow punctate and trepanobioptate, peripheral blood, and contents of the removed or punctured lymph nodes should be examined for the presence of flow cytometry and cytogenetics with FISH in t (11,14) cells, as well as for the expression of cyclin D1 and other cells characteristic of MKL proteins (e.g. Sox11). Close attention is required to potential sites for possible localization of extra-nodular lesions. In particular, due to the frequent involvement of the gastrointestinal tract in the tumor process, the examination program should include upper and lower endoscopy (esophagogastroduodenoscopy and colonoscopy), especially if the patient shows gastrointestinal complaints or if there are signs of latent blood loss from the gastrointestinal tract ( iron deficiency anemia, occult blood in the stool). In the presence of symptoms from the central nervous system, MRI of the brain and cytological examination of the cerebrospinal fluid for the detection of tumor cells and reactive inflammation, measurement of the concentration of protein and glucose in the cerebrospinal fluid are recommended.
Explicit mantle cell lymphocytic leukemia in the blood is observed in approximately 25% of patients, but using sensitive methods of flow cytometry and molecular markers, it is possible to prove the presence of a leukemic component in the blood in almost all patients with MCL.
The usefulness of positron emission tomography (PET) with 18-fluorodeoxyglucose for the initial assessment of the stage of the process and for assessing the response to treatment has not yet been reliably established, although MCL, as a rule, is clearly visible on 18FDG-PET. PET can be especially useful for identifying sites of extranodal (extra-nodal) lesions with respect to which conventional CT and MRI are less sensitive. The use of the PET technique is also reasonable for documenting the completeness of the therapeutic response, especially if the patient already has known nodular lesions, or in the context of clinical trials where complete remission is the goal of MKL therapy. It was shown that PET negativity after treatment is closely correlated with an increase in the duration of progression-free survival.
Forecast
Targeted Therapy
MKL, in most cases, responds well to first-line immunochemotherapy. A number of modern immunochemotherapeutic approaches have significantly improved the indicators of a general and complete objective response to therapy, compared with previously known combination chemotherapy regimens. However, as discussed above, most patients relapse within the next 1-5 years, even after successful induction therapy and high-dose consolidation followed by autologous hematopoietic stem cell transplantation. Immunochemotherapy of the second, third and subsequent lines can have high therapeutic activity in relapses of MKL, however, the duration of the objective response or remission achieved with this is often short. ΠΠΎΡΡΠΎΠΌΡ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π°ΡΡΠΎΡΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΡ Π² Π½ΠΎΠ²ΡΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π°Ρ Π΄Π»Ρ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ ΠΠΠ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΈΠΌΠΌΡΠ½ΠΎΡ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ Π΄Π»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ ΠΊ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΈΠΌΠΌΡΠ½ΠΎΡ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ. ΠΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ Π½ΠΎΠ²ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΡΠΈΡ ΠΎΠ±ΡΡΠΎΡΡΠ΅Π»ΡΡΡΠ²Π°Ρ . ΠΡΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΡ Ρ ΠΈΠΌΠΈΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΠ΅ΠΌ, ΡΡΠΎ ΠΈΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ Π½Π° ΡΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ Π΄Π»Ρ ΠΠΠ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ Π·Π°Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°Π½Π½ΡΠ΅ Π² ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ ΡΠΎΡΡΠ°, ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π°ΠΏΠΎΠΏΡΠΎΠ·Π°. ΠΠ½ΠΎΠ³ΠΈΠ΅ ΠΈΠ· ΡΡΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΠΆΠ΅ ΠΏΡΡΠ°ΡΡΡΡ Π²ΠΊΠ»ΡΡΠ°ΡΡ Π² ΡΡ Π΅ΠΌΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΠΠ Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎΠ»Π½ΡΡ ΡΠ΅ΠΌΠΈΡΡΠΈΠΉ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π²ΡΠΆΠΈΠ²Π°Π½ΠΈΡ Π±Π΅Π· ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ, Π»ΠΈΠ±ΠΎ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ, Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ, Π»ΠΈΠ±ΠΎ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈΠ»ΠΈ ΠΊΠΎΠ½ΡΠΎΠ»ΠΈΠ΄Π°ΡΠΈΠΈ.
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ ΡΠ±ΠΈΠΊΠ²ΠΈΡΠΈΠ½ - ΠΏΡΠΎΡΠ΅Π°ΡΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ
ΠΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ± Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π½Π° ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΠΉ ΡΠ±ΠΈΠΊΠ²ΠΈΡΠΈΠ½ - ΠΏΡΠΎΡΠ΅Π°ΡΠΎΠΌΠ½ΡΠΉ ΠΏΡΡΡ, ΠΈ, ΠΊΠ°ΠΊ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ, ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅Ρ ΡΠ²ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°Π½Ρ Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΡΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ . ΠΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ± ΠΏΠΎΠ»ΡΡΠΈΠ» ΠΎΠ΄ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ FDA Π‘Π¨Π Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΌΠΈΠ΅Π»ΠΎΠΌΠ½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ (ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠΈΠ΅Π»ΠΎΠΌΡ), Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²ΠΎΠ² ΠΠΠ. ΠΠ²Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ II ΡΠ°Π·Ρ, Π²Π·ΡΡΡΠ΅ Π²ΠΌΠ΅ΡΡΠ΅, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ 44 % ΡΠ°ΡΡΠΎΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ, ΠΏΡΠΈΡΡΠΌ Π±ΡΠ»ΠΎ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠΎ 18 % ΠΏΠΎΠ»Π½ΡΡ ΠΎΡΠ²Π΅ΡΠΎΠ². ΠΡΠΈ ΡΡΠΎΠΌ Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² , ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠ²Π΅ΡΠΈΠ²ΡΠΈΡ Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ, Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ, Ρ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π² Π΄ΡΡΠ³ΠΎΠΌ Π²ΠΈΠ΄Π΅ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΎΠΊΠΎΠ»ΠΎ 14 ΠΌΠ΅ΡΡΡΠ΅Π². ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±Π° ΠΏΡΠΈ ΠΠΠ ΡΠ΅ΠΉΡΠ°Ρ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°Π΅ΡΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΡΠ΅ΠΊΡΡΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ΅Π½ΡΡΠΎΠ²ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΊΠ°ΠΊ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ, ΡΠ°ΠΊ ΠΈ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ , ΠΈ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ ΠΈΠ»ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ, Π²ΠΊΠ»ΡΡΠ°Ρ ΡΡ Π΅ΠΌΡ BR ( Π±Π΅Π½Π΄Π°ΠΌΡΡΡΠΈΠ½ -ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±), R-CHOP, Π²ΡΡΠΎΠΊΠΈΠ΅ Π΄ΠΎΠ·Ρ ΡΠΈΡΠ°ΡΠ°Π±ΠΈΠ½Π° ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΡ Π΅ΠΌΡ R-HyperCVAD. ΠΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ± ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΡΠΆΡΠ»ΠΎΠΉ ΠΏΠΎΡΠ΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±Π° ΡΠΎΠΏΡΡΠΆΠ΅Π½ΠΎ Ρ ΡΠ°ΡΡΡΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΠΈ Ρ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² . ΠΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΎΠ·ΠΎ-ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡΡ Π΄Π»Ρ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±Π°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠ° ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ ΡΡΠ΅Π±ΡΠ΅Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π΄ΠΎΠ· Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±Π° ΠΈ ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π΅ΡΠ²ΠΎΠ² ΠΏΡΠΈ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±Π° Ρ Ρ ΠΈΠΌΠΈΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ , ΡΠ°ΠΊΠΆΠ΅ ΡΠΊΠ»ΠΎΠ½Π½ΡΠΌΠΈ Π²ΡΠ·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΡΡ Π½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΡ , ΡΠ°ΠΊΠΈΠΌΠΈ, ΠΊΠ°ΠΊ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΏΠ»Π°ΡΠΈΠ½Ρ ΠΈΠ»ΠΈ Π²ΠΈΠ½ΠΊΠ°-Π°Π»ΠΊΠ°Π»ΠΎΠΈΠ΄Ρ ( Π²ΠΈΠ½ΠΊΡΠΈΡΡΠΈΠ½ , Π²ΠΈΠ½Π±Π»Π°ΡΡΠΈΠ½ , Π²ΠΈΠ½Π΄Π΅ΡΠΈΠ½ , Π²ΠΈΠ½ΠΎΡΠ΅Π»Π±ΠΈΠ½ ). ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ ΡΠ°ΡΡΠΎ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠ²Π°ΡΠΈΡ Π»Π°ΡΠ΅Π½ΡΠ½ΠΎΠΉ Π³Π΅ΡΠΏΠ΅Ρ - ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ , ΡΡΠΎ Π²ΡΠ½ΡΠΆΠ΄Π°Π΅Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠΎΠ² ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°ΡΡ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ², ΡΠ°ΠΊΠΈΡ , ΠΊΠ°ΠΊ Π°ΡΠΈΠΊΠ»ΠΎΠ²ΠΈΡ , Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ.
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π·Π°
ΠΠ΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠΌ , Π²ΡΡΠΎΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΏΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΌΠΈΠ΅Π»ΠΎΠΌΠ½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ (ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠΈΠ΅Π»ΠΎΠΌΡ) ΠΈ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ Π»Π΅ΠΉΠΊΠΎΠ·Π° . ΠΠ½ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΏΡΡΠΌΡΠΌ Π°Π½ΡΠΈΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ, Π° ΠΊΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠΎΡΠΌΠΎΠ·ΠΈΡ Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π· Π² ΠΎΠΏΡΡ ΠΎΠ»ΠΈ , ΠΏΠΎΠ΄Π°Π²Π»ΡΠ΅Ρ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΡ ΠΈ ΡΡΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ , ΡΠ½ΠΈΠΆΠ°Π΅Ρ ΡΠ΅ΠΊΡΠ΅ΡΠΈΡ ΡΡΠ΄Π° ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² , ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΠΈΠΌΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡΡΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ. ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΠΠ Π±ΠΎΠ»Π΅Π΅ ΡΡΠ°ΡΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΡ, ΡΠ°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄Π° , ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄Π° Ρ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ ΠΠΠ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Ρ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡΡ ΠΊ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ .
Π‘ΡΠ΅Π΄ΠΈ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ ΠΠΠ, ΡΠ°Π½Π΅Π΅ Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎ Π»Π΅ΡΠΈΠ²ΡΠΈΡ ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΌΠΈ ΡΡ Π΅ΠΌΠ°ΠΌΠΈ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ , Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈΡΡ ΡΠ°ΡΡΠΈΡΠ½ΡΠ΅ ΠΈ ΠΏΠΎΠ»Π½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ ΠΏΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΎΠ΄Π½ΠΈΠΌ Π»ΠΈΡΡ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ΠΎΠΌ, ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡΠΌ ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΠΎ. ΠΡΠΈ ΠΎΠ±Π½Π°Π΄ΡΠΆΠΈΠ²Π°ΡΡΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΡΠΈΠ²Π΅Π»ΠΈ ΠΊ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ II ΡΠ°Π·Ρ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄Π° ΠΏΡΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΌ ΠΠΠ. Π Ρ ΠΎΠ΄Π΅ ΡΡΠΈΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ 42 % ΠΈΠ· 57 Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ ΠΠΠ Π΄Π°Π»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ΠΎΠΌ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ Π²ΡΠΆΠΈΠ²Π°Π½ΠΈΡ Π΄ΠΎ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 5,7 ΠΌΠ΅ΡΡΡΠ΅Π² . Π’ΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ΠΎΠΌ ΠΏΡΠΎΡΠ²Π»ΡΠ»Π°ΡΡ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² Π²ΠΈΠ΄Π΅ ΠΎΠ±ΡΠ°ΡΠΈΠΌΠΎΠΉ ΠΌΠΈΠ΅Π»ΠΎΡΡΠΏΡΠ΅ΡΡΠΈΠΈ.
ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΏΠΎΠ»Π½ΡΠ΅ ΡΠ΅ΠΌΠΈΡΡΠΈΠΈ , Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ΠΎΠΌ Π½Π°Π±Π»ΡΠ΄Π°Π»ΡΡ ΡΠ°ΠΊΠΆΠ΅ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ ΠΠΠ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π³Π΅ΠΌΠΎΠΏΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ , Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΈ ΠΏΠΎΡΠ»Π΅ Π°Π»Π»ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ , Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ Π°ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΠΉ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ 134 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² c ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡΠ»Π΅ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±Π° Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ ΠΈ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ 28 % ΡΠ°ΡΡΠΈΡΠ½ΡΡ ΠΎΡΠ²Π΅ΡΠΎΠ² ΠΈ 8 % ΠΏΠΎΠ»Π½ΡΡ ΡΠ΅ΠΌΠΈΡΡΠΈΠΉ , ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΌΠ΅Π΄ΠΈΠ°Π½Π° ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΊΡΠ° Π±ΡΠ»Π° 16,6 ΠΌΠ΅ΡΡΡΠ΅Π² .
ΠΠΎΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅, ΠΏΠΎΠΊΠ°Π·Π°Π²ΡΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄Π° Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ ΠΏΡΠΈΠ²Π΅Π»ΠΈ ΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΡΠΌ ΡΠ΅ΠΉΡΠ°Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΡ Β«R2Β» ΡΡ Π΅ΠΌ ΠΏΡΠΈ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΠΎΠΌ Π»Π΅ΠΉΠΊΠΎΠ·Π΅ ΠΈ ΠΏΡΠΈ ΠΈΠ½Π΄ΠΎΠ»Π΅Π½ΡΠ½ΡΡ Π»ΠΈΠΌΡΠΎΠΌΠ°Ρ . ΠΡΠΈ ΡΡΠΎΠΌ Π±ΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄Π° Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄ΠΎΡΡΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Ρ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²ΠΈΡΡΡΡΠ΅ΠΉ ΠΈΠ»ΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΠΠ. ΠΠ΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Β«R2Β» (Π»Π΅Π½Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ ΠΏΠ»ΡΡ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±) ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΠΊΠΆΠ΅ Π½Π°ΠΉΡΠΈ ΡΠ²ΠΎΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²ΠΎΠ² ΠΠΠ ΠΏΠΎΡΠ»Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ .
Π’Π°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄ ΡΠ°ΠΊΠΆΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π΅Π½ ΠΏΡΠΈ ΠΠΠ Π² ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠ°Ρ Π°Π½ΡΠΈΠ°Π½Π³ΠΈΠΎΠ³Π΅Π½Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ°Π»ΠΈΠ΄ΠΎΠΌΠΈΠ΄Π° ΠΈ Π΅Π³ΠΎ ΡΠΈΠ½Π΅ΡΠ³ΠΈΠ·ΠΌ Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠ±ΠΎΠΈΡ , ΠΏΠΎΡΠ»ΡΠΆΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ Π΅Π³ΠΎ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ ΠΈ ΠΌΠ΅ΡΡΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ PEP-C (Π½ΠΈΠ·ΠΊΠΈΠ΅ Π΄ΠΎΠ·Ρ ΠΏΡΠ΅Π΄Π½ΠΈΠ·ΠΎΠ»ΠΎΠ½Π° , ΡΡΠΎΠΏΠΎΠ·ΠΈΠ΄Π° , ΠΏΡΠΎΠΊΠ°ΡΠ±Π°Π·ΠΈΠ½Π° ΠΈ ΡΠΈΠΊΠ»ΠΎΡΠΎΡΡΠ°ΠΌΠΈΠ΄Π° . ΠΡΠ° ΡΡ Π΅ΠΌΠ° ΠΏΠΎΠ»ΡΡΠΈΠ»Π° Π½Π°Π·Π²Π°Π½ΠΈΠ΅ RT-PEP-C. ΠΠ° ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ ΠΈΠ»ΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΠΌ ΠΠΠ Π±ΡΠ»Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΡΠ°ΡΡΠΎΡΠ° ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΎΡΠ²Π΅ΡΠΎΠ² 73 %, ΠΈΠ· Π½ΠΈΡ 32 % ΠΏΠΎΠ»Π½ΡΡ ΡΠ΅ΠΌΠΈΡΡΠΈΠΉ . Π‘ ΡΡΡΡΠΎΠΌ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΠΈΠ· ΡΡΠΈΡ Π±ΠΎΠ»ΡΠ½ΡΡ Π±ΡΠ»ΠΈ ΡΠ°Π½Π΅Π΅ Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎ ΠΏΡΠΎΠ»Π΅ΡΠ΅Π½Ρ, ΡΡΠΎ ΠΎΡΠ΅Π½Ρ Ρ ΠΎΡΠΎΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ.
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ ΠΠ Π
ΠΠΈΡΠ΅Π½Ρ ΡΠ°ΠΏΠ°ΠΌΠΈΡΠΈΠ½Π° Ρ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ (ΠΠ Π, mTOR) ΡΠ²Π»ΡΠ΅ΡΡΡ Π½ΠΈΠΆΠ΅ΡΡΠΎΡΡΠΈΠΌ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΡΠΌ Π·Π²Π΅Π½ΠΎΠΌ Π² ΠΊΠ°ΡΠΊΠ°Π΄Π΅ ΡΠΎΡΡΠ°ΡΠΈΠ΄ΠΈΠ»ΠΈΠ½ΠΎΠ·ΠΈΡΠΎΠ»-3-ΠΊΠΈΠ½Π°Π·Ρ (PI3K) / Akt. ΠΡΠΎΡ ΠΊΠ°ΡΠΊΠ°Π΄ ΠΈΠ³ΡΠ°Π΅Ρ ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΡΠΎΠ»Ρ Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ ΠΌΠ ΠΠ Π³Π΅Π½ΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π±Π΅Π»ΠΊΠΎΠ² , Π²ΠΊΠ»ΡΡΠ°Ρ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΡ ΠΌΠ ΠΠ ΡΠΈΠΊΠ»ΠΈΠ½Π° D1, ΡΠΎΠ³ΠΎ ΡΠ°ΠΌΠΎΠ³ΠΎ, ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΠΠ.
ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² ΠΠ Π ΠΏΡΠ΅ΡΡΠ²Π°ΡΡ Π·Π°Π²ΠΈΡΡΡΠΈΠ΅ ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΈΠΊΠ»ΠΈΠ½Π° D1 Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΡΠ΅ ΠΊΠ°ΡΠΊΠ°Π΄Ρ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΌ Π½Π°Π»ΠΈΡΠΈΠΈ Ρ Π½ΠΈΡ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΊΡΠ° Π² ΠΎΠΏΡΡ ΠΎΠ»ΡΡ , ΠΏΡΠΎΡΠ²Π»ΡΡΡΠΈΡ Π³ΠΈΠΏΠ΅ΡΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΡΠΈΠΊΠ»ΠΈΠ½Π° D1, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ°ΠΊΠΈΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² β ΡΠ΅ΠΌΡΠΈΡΠΎΠ»ΠΈΠΌΡΡ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠ΅ ΡΠ°ΠΏΠ°ΠΌΠΈΡΠΈΠ½Π° , Π±ΡΠ» ΡΡΠΏΠ΅ΡΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π² ΡΡΠ΄Π΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ II ΡΠ°Π·Ρ ΠΏΡΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°Ρ ΠΠΠ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ III ΡΠ°Π·Ρ, ΡΡΠ°Π²Π½ΠΈΠ²Π°Π²ΡΠ΅ΠΉ 2 Π΄ΠΎΠ·Ρ ΠΈ 2 ΡΠ΅ΠΆΠΈΠΌΠ° Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΠΌΡΠΈΡΠΎΠ»ΠΈΠΌΡΡΠ° Ρ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΌ ΡΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΈΠΌΠΌΡΠ½ΠΎ-Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ, ΡΡ Π΅ΠΌΠ°, ΠΏΡΠ΅Π΄ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π²ΡΠ°Ρ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ 175 ΠΌΠ³ ΡΠ΅ΠΌΡΠΈΡΠΎΠ»ΠΈΠΌΡΡΠ° Π² Π½Π΅Π΄Π΅Π»Ρ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 3-Ρ Π½Π΅Π΄Π΅Π»Ρ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΎΠΌ Π½Π° Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ 75 ΠΌΠ³ Π² Π½Π΅Π΄Π΅Π»Ρ, ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π² ΠΎΠ±ΡΠ΅ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΎΡΠ²Π΅ΡΠΎΠ² Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΈ Π² ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π±Π΅Π·ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΉ Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΎΠΉ Π΄ΠΎΠ·ΠΎΠΉ ΡΠ΅ΠΌΡΠΈΡΠΎΠ»ΠΈΠΌΡΡΠ° , ΡΠ°ΠΊ ΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΈΠΌΠΌΡΠ½ΠΎ- Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ . Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠ΅ΠΌΡΠΈΡΠΎΠ»ΠΈΠΌΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΡ Π΅ΠΌΠ°ΠΌΠΈ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ ΠΏΡΠΈ ΠΠΠ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈ Π°Π³ΡΠ΅ΡΡΠΈΠ²Π½ΡΡ ΠΊΡΡΠΏΠ½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ Π»ΠΈΠΌΡΠΎΠΌΠ°Ρ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ°. ΠΠ°ΠΊ ΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡ ΠΠ Π, ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡ , ΡΠ΅ΠΌΡΠΈΡΠΎΠ»ΠΈΠΌΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ·ΡΡΠ°Π΅ΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ΅Π΄ΡΡΠ²Π° ΠΊΠΎΠ½ΡΠΎΠ»ΠΈΠ΄Π°ΡΠΈΠΈ ΡΠ΅ΠΌΠΈΡΡΠΈΠΈ ΠΈ ΡΡΠ΅Π΄ΡΡΠ²Π° ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΡΠΈ ΠΠΠ ΠΈ Π°Π³ΡΠ΅ΡΡΠΈΠ²Π½ΡΡ ΠΊΡΡΠΏΠ½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ Π»ΠΈΠΌΡΠΎΠΌΠ°Ρ , ΠΊΠ°ΠΊ Π² ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ, ΡΠ°ΠΊ ΠΈ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ . ΠΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΡΠ²Π»ΡΠ΅Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, ΠΊΠ°ΠΊ Π² ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ, ΡΠ°ΠΊ ΠΈ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡΡ Ρ ΡΠΈΡΡΠΊΡΠΈΠΌΠ°Π±ΠΎΠΌ ΠΈ/ΠΈΠ»ΠΈ Ρ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°Ρ ΠΠΠ ΠΈ ΠΏΡΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ ΡΠΎΡΠΌΠ°Ρ ΠΠΠ, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ ΠΊ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±Ρ.
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ PI3K / Akt
PI3K ( ΡΠΎΡΡΠ°ΡΠΈΠ΄ΠΈΠ»ΠΈΠ½ΠΎΠ·ΠΈΡΠΎΠ»-3-ΠΊΠΈΠ½Π°Π·Π° ) ΠΈ Akt Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π²ΡΡΠ΅ ΠΠ Π ( ΠΌΠΈΡΠ΅Π½ΠΈ ΡΠ°ΠΏΠ°ΠΌΠΈΡΠΈΠ½Π° Ρ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ ) Π²ΠΎ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΡΡ ΠΊΠ°ΡΠΊΠ°Π΄Π°Ρ . ΠΡΠΎΡ PI3K/Akt ΠΏΡΡΡ Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»ΡΡ , ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ B-ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ Π»ΠΈΠΌΡΠΎΠΌΠ°Ρ , Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠΈ ΠΠΠ. Π’Π°ΠΊ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π΄Π΅Π»ΡΡΠ°-ΡΠΎΡΠΌΠ° PI3K (PI3K-delta) ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π° Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π² 90 % ΡΠ»ΡΡΠ°Π΅Π² B-ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ Π»ΠΈΠΌΡΠΎΠΌ, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΈ ΠΠΠ. ΠΡΠΎ Π΄Π΅Π»Π°Π΅Ρ PI3K-delta ΡΠ΄ΠΎΠ±Π½ΠΎΠΉ ΠΈ Π»ΠΎΠ³ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΡΠ΅Π½ΡΡ Π΄Π»Ρ Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² . ΠΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ°ΠΊΠΈΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² PI3K-delta, ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΠΉ Π΄Π»Ρ ΠΏΡΠΈΡΠΌΠ° Π²Π½ΡΡΡΡ β ΠΈΠ΄Π΅Π»Π°Π»ΠΈΡΠΈΠ± ΠΏΡΠΎΡΠ²ΠΈΠ» ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ I ΡΠ°Π·Ρ ΠΏΡΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠΌ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΌ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΠΎΠΌ Π»Π΅ΠΉΠΊΠΎΠ·Π΅, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠΌ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΌ ΠΠΠ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΈΠ΄Π΅Π»Π°Π»ΠΈΡΠΈΠ± ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΠΠΠ, ΠΊΠ°ΠΊ Π² ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ, ΡΠ°ΠΊ ΠΈ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡΡ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ°ΡΠ³Π΅ΡΠ½ΡΠΌΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ, Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ, ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ.
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ B-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠΊΠ°Π΄Π°
ΠΠΎΡΠΌΠ°Π»ΡΠ½ΡΠΉ Π³ΡΠΌΠΎΡΠ°Π»ΡΠ½ΡΠΉ ΠΈΠΌΠΌΡΠ½Π½ΡΠΉ ΠΎΡΠ²Π΅Ρ Π½Π° Π°Π½ΡΠΈΠ³Π΅Π½ , ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΠΉ ΠΊ Π±Π»Π°ΡΡΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ (ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π½ΡΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΠΈ), ΡΠΎΠ·ΡΠ΅Π²Π°Π½ΠΈΡ ΠΈ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ B-Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² , ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Π-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠΊΠ°Π΄Π° β BCR. ΠΠΈΠΆΠ΅ B-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ° Π² ΡΡΠΎΠΌ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠΌ ΠΊΠ°ΡΠΊΠ°Π΄Π΅ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠ°Ρ Β«ΡΠ΅Π»Π΅Π·ΡΠ½ΠΎΡΠ½Π°Ρ ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° Β» (Syk), ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° ΠΡΡΡΠΎΠ½Π° (Btk), ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° C-Π±Π΅ΡΠ° (Π ΠΠ‘-Ξ², PKC-beta). ΠΡΠ΅ ΡΡΠΈ ΠΊΠΈΠ½Π°Π·Ρ ΡΠ²Π»ΡΡΡΡΡ ΡΠ΄ΠΎΠ±Π½ΡΠΌΠΈ ΠΈ Π»ΠΎΠ³ΠΈΡΠ½ΡΠΌΠΈ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΌΠΈΡΠ΅Π½ΡΠΌΠΈ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π½ΠΎΠ²ΡΡ ΡΠ°ΡΠ³Π΅ΡΠ½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ². Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ I ΠΈ II ΡΠ°Π·Ρ ΠΏΡΠΈ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΠ΅ (ΠΠΠ) ΠΈ ΠΏΡΠΈ Π΄ΡΡΠ³ΠΈΡ Π»ΠΈΠΌΡΠΎΠΌΠ°Ρ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΡΠ΅Π»Π΅Π·ΡΠ½ΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ Syk β ΡΠΎΡΡΠ°ΠΌΠ°ΡΠΈΠ½ΠΈΠ±Π° , ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ ΠΡΡΡΠΎΠ½Π° Btk β ΠΈΠ±ΡΡΡΠΈΠ½ΠΈΠ±Π° (PCI-32765) ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ C-Π±Π΅ΡΠ° β ΡΠ½Π·Π°ΡΡΠ°ΡΡΠΈΠ½Π° .
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡ ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ ΠΡΡΡΠΎΠ½Π° β ΠΈΠ±ΡΡΡΠΈΠ½ΠΈΠ± β ΠΏΠΎΠΊΠ°Π·Π°Π» Π²ΡΡΠΎΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΉ ΠΠΠ.
Π§ΡΠΎ ΠΆΠ΅ ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΡΠ΅Π»Π΅Π·ΡΠ½ΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ β ΡΠΎΡΡΠ°ΠΌΠ°ΡΠΈΠ½ΠΈΠ±Π°, ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ C-beta β ΡΠ½Π·Π°ΡΡΠ°ΡΡΠΈΠ½Π° , ΡΠΎ ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ ΠΠΠ ΡΠΊΠΎΡΠ΅Π΅ ΡΠ°Π·ΠΎΡΠ°ΡΠΎΠ²ΡΠ²Π°ΡΡΠ° (ΡΠ°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΡΠΎΡΠ° ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΡΠΎΡΡΠ°ΠΌΠ°ΡΠΈΠ½ΠΈΠ± ΠΏΡΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΉ ΠΈΠ»ΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΠΠ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° Π²ΡΠ΅Π³ΠΎ 11 %). Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ, ΡΡΠΈΡΡΠ²Π°Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΡΡΡ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠΏΡΠΈΠΉ ΠΏΡΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠΌ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π½ΠΎΠΌ ΠΠΠ, Π΄Π°ΠΆΠ΅ ΡΡΠ°, ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅Π²ΡΡΠΎΠΊΠ°Ρ, ΡΠ°ΡΡΠΎΡΠ° ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ. Π ΡΠΎΠΌΡ ΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΡΠΎ ΡΠ°ΡΡΠΎΡΠ° ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° ΠΌΠΎΠΆΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡΡΡ ΠΏΡΠΈ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ ΡΠΎΡΡΠ°ΠΌΠ°ΡΠΈΠ½ΠΈΠ±Π° ΠΈ/ΠΈΠ»ΠΈ ΡΠ½Π·Π°ΡΡΠ°ΡΡΠΈΠ½Π° Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ°ΡΠ³Π΅ΡΠ½ΡΠΌΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ°ΠΌΠΈ Π-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠΊΠ°Π΄Π° (ΡΠ°ΠΊ ΡΠΊΠ°Π·Π°ΡΡ, ΠΏΠΎΠ»Π½Π°Ρ Π±Π»ΠΎΠΊΠ°Π΄Π° Π²ΡΠ΅Ρ Π²Π΅ΡΠ²Π΅ΠΉ Π-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ°), ΠΈΠ»ΠΈ ΠΏΡΠΈ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Ρ ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ , ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ .
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ Π³ΠΈΡΡΠΎΠ½Π΄Π΅Π°ΡΠ΅ΡΠΈΠ»Π°Π·Ρ
ΠΡΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π°ΡΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΠΈΡΡΠΎΠ½ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² ΠΈ ΡΡΠ°Π½ΡΠΊΡΠΈΠΏΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² . Π£ΡΠΎΠ²Π½ΠΈ Π°ΡΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π΄Π΅Π°ΡΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΡΡΠΎΠ½ΠΎΠ² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Ρ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ Π²ΠΈΠ΄ΠΎΠ² Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ , Π²ΠΊΠ»ΡΡΠ°Ρ Π»ΠΈΠΌΡΠΎΠΌΡ ΠΈ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎ ΠΠΠ. Π ΠΎΠΏΡΡΠ°Ρ Π² ΠΏΡΠΎΠ±ΠΈΡΠΊΠ΅ ( in vitro ) ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½Π° Π±Π΅Π»ΠΊΠ° ΡΠΈΠΊΠ»ΠΈΠ½Π° D1, ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΠΠ, ΠΏΠΎΠ½ΠΈΠΆΠ°Π΅ΡΡΡ ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΊΡΠ»ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠΌ Π³ΠΈΡΡΠΎΠ½Π΄Π΅Π°ΡΠ΅ΡΠΈΠ»Π°Π·Ρ Π²ΠΎΡΠΈΠ½ΠΎΡΡΠ°ΡΠΎΠΌ . ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π²ΠΎΡΠΈΠ½ΠΎΡΡΠ°Ρ ΡΠΏΠΎΡΠΎΠ±Π΅Π½ ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°ΡΡ PI3K / Akt ΠΏΡΡΡ . ΠΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π²ΠΎΡΠΈΠ½ΠΎΡΡΠ°ΡΠ°, ΡΠΆΠ΅ ΡΡΠ²Π΅ΡΠΆΠ΄ΡΠ½Π½ΠΎΠ³ΠΎ Π² Π‘Π¨Π Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ Π’-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ , ΠΏΡΠΈ ΠΠΠ, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ Ρ Π½Π΅Π³ΠΎ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΠΠ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ³Π»ΡΠ±Π»ΡΠ½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π²ΠΎΡΠΈΠ½ΠΎΡΡΠ°ΡΠ°, Π½Π°ΡΡΠ΄Ρ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ°ΠΌΠΈ Π³ΠΈΡΡΠΎΠ½Π΄Π΅Π°ΡΠ΅ΡΠΈΠ»Π°Π·Ρ. ΠΡΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ Π½ΠΎΠ²ΡΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² Π³ΠΈΡΡΠΎΠ½Π΄Π΅Π°ΡΠ΅ΡΠΈΠ»Π°Π·Ρ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π²ΠΎΡΠΈΠ½ΠΎΡΡΠ°ΡΠ°, Ρ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ ΠΈ ΡΠΈΡΠΎΡΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ .
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π°
ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ Ρ Π²ΡΠ΅Ρ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΠΠΠ β ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΡΠΈΠΊΠ»ΠΈΠ½Π° D1 Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΎΠΏΡΡ ΠΎΠ»ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½Π° Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² , Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½Π° ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΡΠΈΠΊΠ»ΠΈΠ½Π° D2 ΠΈΠ»ΠΈ ΠΈΠ»ΠΈ ΡΠΈΠΊΠ»ΠΈΠ½Π° D3. ΠΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡ ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ΅ΡΠ°ΠΏΠΈΠΈ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΡ Π½Π° ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ² , ΠΈ/ΠΈΠ»ΠΈ ΡΠΈΠΊΠ»ΠΈΠ½-Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΊΠΈΠ½Π°Π·. Π’Π°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ»Π°Π²ΠΎΠΏΠΈΡΠΈΠ΄ΠΎΠ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ»Π°Π²ΠΎΠ½ΠΎΠΌ Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΠΊΠ»ΡΡΠ°ΡΡ Π² ΡΠ΅Π±Ρ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠΊΠ»ΠΈΠ½Π° D1 ΠΈ ΡΠΈΠΊΠ»ΠΈΠ½Π° D3, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½ΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠΊΠ»ΠΈΠ½-Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΊΠΈΠ½Π°Π· CDK4 ΠΈ CDK6. Π ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ , ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½ΠΎΠΌ Π² ΠΠ°Π½Π°Π΄Π΅ , ΡΠ»Π°Π²ΠΎΠΏΠΈΡΠΈΠ΄ΠΎΠ» Π² ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π» Π²ΡΠ΅Π³ΠΎ Π»ΠΈΡΡ ΡΠΊΡΠΎΠΌΠ½ΡΠ΅ 11 % ΠΎΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° ΠΏΡΠΈ ΠΠΠ. ΠΠ΄Π½Π°ΠΊΠΎ Π² ΡΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π°Π²ΠΎΠΏΠΈΡΠΈΠ΄ΠΎΠ» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΡΠ·ΠΈΠΈ, ΡΡΠΎ Π½Π΅ ΠΎΡΠ΅Π½Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ Π±ΡΡΡΡΠΎ Π²ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΈΠ· ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° . ΠΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ , Π² ΠΊΠΎΡΠΎΡΡΡ , Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΡΡΠ° ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΠ»Π°Π²ΠΎΠΏΠΈΡΠΈΠ΄ΠΎΠ»Π° , ΠΎΠ½ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΡ ΠΈΠ½ΡΡΠ·ΠΈΠΉ, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π³ΠΎΡΠ°Π·Π΄ΠΎ Π»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ Π»Π΅ΠΉΠΊΠΎΠ·Π° . ΠΡΠΎΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ Ρ ΠΏΡΠΎΠ»ΠΎΠ½Π³ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΈΠ½ΡΡΠ·ΠΈΡΠΌΠΈ ΡΠ»Π°Π²ΠΎΠΏΠΈΡΠΈΠ΄ΠΎΠ»Π° , Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΠΏΠΎΡΠΎΠ±Π΅Π½ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Π»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΏΡΠΈ ΠΠΠ.
ΠΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ Π½Π° Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ Π±Π»ΠΎΠΊΠ°Π΄Ρ Π½Π΅ ΡΠ°ΠΌΠΈΡ ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ², Π° ΡΠΈΠΊΠ»ΠΈΠ½-Π·Π°Π²ΠΈΡΠΈΠΌΡΡ ΠΊΠΈΠ½Π°Π· CDK4 ΠΈ/ΠΈΠ»ΠΈ CDK6, ΠΏΠΎΠ΄Ρ ΠΎΠ΄, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠ±ΠΎΠΉΡΠΈ Π°ΠΏ-ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ (ΡΡΠΈΠ»Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ) ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ² D2 ΠΈΠ»ΠΈ D3 Π² ΠΎΡΠ²Π΅Ρ Π½Π° Π±Π»ΠΎΠΊΠ°Π΄Ρ ΡΠΈΠΊΠ»ΠΈΠ½Π° D1 β ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π»Π΅ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ΅ΠΉΡΠ°Ρ ΠΈΠ·ΡΡΠ°Π΅ΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ Π°Π³Π΅Π½ΡΠ° PD 0332991. ΠΡΠΎΡ ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΡΠΉ Π°Π³Π΅Π½Ρ ΠΏΠΎΠΊΠ°Π·Π°Π» ΡΠ²ΠΎΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π΅ ΠΠΠ, ΠΈ ΠΈΠ·ΡΡΠ°Π΅ΡΡΡ ΠΊΠ°ΠΊ Π² ΠΌΠΎΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ, ΡΠ°ΠΊ ΠΈ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Ρ Π±ΠΎΡΡΠ΅Π·ΠΎΠΌΠΈΠ±ΠΎΠΌ .
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ Bcl-2, BH3-ΠΌΠΈΠΌΠ΅ΡΠΈΠΊΠΈ
Π Π΅Π³ΡΠ»ΡΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π°ΠΏΠΎΠΏΡΠΎΠ·Π° Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΎΡΠ΅Π½Ρ ΡΠ»ΠΎΠΆΠ½Π°. Π‘ΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΊΠ°ΠΊ ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² , ΠΏΠΎΠ²ΡΡΠ°ΡΡΠΈΡ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΊ Π°ΠΏΠΎΠΏΡΠΎΠ·Ρ, ΡΠ°ΠΊ ΠΈ ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² , Π·Π°ΠΏΡΡΠΊΠ°ΡΡΠΈΡ ΠΈΠ»ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΡ Π°ΠΏΠΎΠΏΡΠΎΠ·Π°. Π ΠΏΡΠΎ-Π°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ Π±Π΅Π»ΠΊΠ°Ρ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΉ Π΄ΠΎΠΌΠ΅Π½ BH3. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π±Π΅Π»ΠΊΠΈ , ΠΏΠΎΠ²ΡΡΠ°ΡΡΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΊ Π°ΠΏΠΎΠΏΡΠΎΠ·Ρ, Π² ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΡΡΡΡΡ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ ΠΠΠ, ΠΎΠ΄Π½Π° ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΉ ΠΏΡΠΈ ΠΠΠ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π°Π³Π΅Π½ΡΠΎΠ², ΠΈΠΌΠΈΡΠΈΡΡΡΡΠΈΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΉ Π΄ΠΎΠΌΠ΅Π½ BH3 ΠΈ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π±Π΅Π»ΠΊΠ° Bcl-2. ΠΡΠΎ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ Π°ΠΏΠΎΠΏΡΠΎΠ·Ρ ΠΊΠ»Π΅ΡΠΊΠΈ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ BH3-ΠΌΠΈΠΌΠ΅ΡΠΈΠΊΠΎΠ², ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² Bcl-2, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π²Π΅Π½Π΅ΡΠΎΠΊΠ»Π°ΠΊΡ (ABT-199), ΠΎΠ±Π°ΡΠΎΠΊΠ»Π°ΠΊΡ (GX 15-070) ΠΈ Π½Π°Π²ΠΈΡΠΎΠΊΠ»Π°ΠΊΡ (ABT-263).
ΠΡΠ΄ΡΡΠΈΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ
Links
- β Monarch Disease Ontology release 2018-06-29sonu - 2018-06-29 - 2018.
- β Π’ΡΠ°Π½ΡΠ»ΠΎΠΊΠ°ΡΠΈΡ t(11;14)(q13;q32)
- β Li JY, Gaillard F., Moreau A., et al. Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization (Π°Π½Π³Π».) // The American Journal of Pathology : journal. β 1999. β May ( vol. 154 , no. 5 ). β P. 1449β1452 . β DOI : 10.1016/S0002-9440(10)65399-0 . β PMID 10329598 .
- β Barouk-Simonet E., Andrieux J., Copin MC, et al. TPA stimulation culture for improved detection of t(11;14)(q13;q32) in mantle cell lymphoma (Π°Π½Π³Π».) // Ann. Genet. : journal. - 2002. - Vol. 45 , no. 3 . β P. 165β168 . β DOI : 10.1016/S0003-3995(02)01122-X . β PMID 12381451 .
- β Mantle Cell Lymphoma
- β Turgeon, Mary Louise. Clinical hematology: theory and procedures. β Hagerstown, MD : Lippincott Williams & Wilkins, 2005. β P. 283. β Β«Frequency of lymphoid neoplasms. (Source: Modified from WHO Blue Book on Tumour of Hematopoietic and Lymphoid Tissues. 2001, p. 2001.)Β». β ISBN 0-7817-5007-5 .
- β ΠΠ°Π½ΡΠΈΠΉΠ½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ Π»ΠΈΠΌΡΠΎΠΌΠ°
ΠΠ½Π΅ΡΠ½ΠΈΠ΅ ΡΠ΅ΡΡΡΡΡ
In English
- ΠΡΠ°ΡΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΏΠ°ΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ
- ΠΠΎΠ½ΡΠΎΡΡΠΈΡΠΌ ΠΏΠΎ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΠ΅
- ΠΠΈΠΌΡΠΎΠΌΠ½Π°Ρ ΠΡΡΠΎΡΠΈΠ°ΡΠΈΡ β ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΡΠΈΡΠ°Π½ΡΠΊΠ°Ρ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ, Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΡΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ, ΠΈΡ ΡΠ΅ΠΌΡΡΠΌ, Π΄ΡΡΠ·ΡΡΠΌ ΠΈ Π»ΠΈΡΠ°ΠΌ, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡΠΈΠΌ ΡΡ ΠΎΠ΄ Π·Π° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Ρ Π»ΠΈΠΌΡΠΎΠΌΠΎΠΉ